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Abstract Surrogate-assisted optimization was developed for handling complex and
costly problems, which arise from real-world applications. The main idea behind
surrogate-assisted optimization is to optimally exhaust the available information
to lower the amount of required expensive function evaluations thus saving time,
resources and the related costs. This chapter outlines the existing challenges in this
field that include benchmarking, constraint handling, constructing ensembles of sur-
rogates and solving discrete and/or multi-objective optimization problems. We dis-
cuss shortcomings of existing techniques, propose suggestions for improvements and
give an outlook on promising research directions. This is valuable for practitioners
and researchers alike, since the increased availability of computational resources on
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the one hand and the continuous development of new approaches on the other hand
raise many intricate new problems in this field.

1 Introduction

The state-of-the-art in handling complex and costly problems arising from real-world
applications is the use of surrogate models in optimization. These real-world appli-
cations commonly belong to the class of black-box problems, where the available
problem information, e.g.,mathematical equations or other exploited problemknowl-
edge is very sparse. Often, the only way to extract any information is the evaluation
of candidate solutions. These evaluations can consist of difficult and time-consuming
simulations or even hazardous physical experiments. Themain intention of surrogate-
assisted optimization is to reduce the time, resources and the related costs by effi-
ciently using all available information thus lowering the amount of required function
evaluations.

The main contribution of this chapter is to outline existing challenges in this field.
We showwhere established techniques are lacking or need to be revised. Furthermore
wepresent anoutlookonpromising researchdirections. This is crucial to practitioners
as well as researchers, since the increased availability of computational resources as
well as the development in the field raise many intricate new problems.

An important open issue, presented in Sect. 1, is the selection of an adequate set of
benchmark or test functions, which can be used to evaluate algorithm and modeling
performance. There are no tools to determine the applicability of surrogate-based
methods in an objective manner. However, on certain data sets, different algorithms
can be compared using adequate methods from statistics.

Constraint handling, a great challenge in the field, is discussed in Sect. 2. Different
solution strategies can be considered. These strategies have to take care of infeasible
offspring, which are generated by feasible ancestors. The most simple strategy, i.e.,
just omitting these solutions, might not be the best choice. Alternatively, constraints
might be modeled by surrogates as well, or integrated into the algorithms. However,
the determination of an optimal strategy is a difficult task.

Instead of using only one surrogate, several surrogates can be generated and
evaluated in parallel as examined in Sect. 3. All surrogates use the same solutions
evaluated by the expensive function. Multiple surrogates can also be used to partition
the search space. In the last decade, ensembles of surrogates gained popularity.
The surrogates for the ensemble are chosen based on their performance and the
weights are adaptive and inversely proportional to the local modeling errors. Recent
approaches such as the Evolvability Learning of Surrogates approach implement
local surrogates for each offspring individually [48] or apply sophisticated stacking
methods as described in [5]. However, the selection of the best ensemble building
methods remains an open issue.

Another important challenge is the handling of combinatorial/discrete search
spaces. Many optimization problems in practice cannot be represented by vectors
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of real variables. Rather, they have some discrete structures, e.g., categorical vari-
ables, strings, sequences, permutations, trees, or graphs in general. Standard surro-
gate modeling methods will often fail to deal with these methods efficiently. How-
ever, current research provides the tools to solve this issue. Most importantly, the
usage of similarity measures allows to transfer Gaussian process models (also called
Kriging) [28] to the discrete domain. Section4 introduces problems and promising
solution approaches for discrete surrogate-based optimization.

In multi-objective optimization [23], incorporating surrogates for complex,
demanding optimization problems became popular in recent years as well. Several
attempts have been proposed to effectively and efficiently combine approaches from
both areas, surrogate-assisted and multi-objective optimization, for example [47].
However, the field still misses further specifically tailored ideas as well as basics to
allow for an efficient start and a rigorous analysis. To this end, Sect. 5 summarizes
already available achievements and focuses onmissing features that need to be added
in the future.

Section6 sheds some light on additional topics related to dynamic problems,
problem dimensionality and noisy problems. The handling of dynamic optimization
problems plays an important role, because many real-world problems occur in time-
varying environments. Another unsolved problem arises from high-dimensional and
large-scale data. Existing surrogates might not be applicable, because of their com-
putational complexity. New surrogates might need to be considered as well as new
integration schemes. This is especially important sincemany applications profit from
parallelization of simulation systems, e.g., in computational fluid dynamics simula-
tion. Thus, larger and more complex problems can be considered. Noise handling is
also an important research topic. Especially, how to handle noise during the surrogate
building process.

Finally, Sect. 7.3 ends the chapter with some concluding remarks.

2 Benchmarking

Benchmarking is a core issue when developing algorithms. Optimization algorithm
developers need test functions to (i) investigate and understand algorithm behavior
and (ii) compare competing algorithms.

In the past, several test suites for optimization algorithms were presented and
considered as state of the art. However, there are several drawbacks of these classical
test suites, namely:

• Problem instances are mostly artificial and have no direct link to real-world set-
tings.

• Since there is a fixed number of test instances, algorithms can be fitted or tuned
to this specific and very limited set of test functions. As a consequence, studies
(benchmarks) provide insight how these algorithms perform on this specific set of
test instances, but no insight on how they perform in general is gained.
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• Statistical tools for the comparisons of several algorithms on several test problem
instances are relatively complex and not easy to analyse.

To retrieve a meaningful benchmark, practitioners and researchers have to select
a number of test instances from a huge field of test classes and interpret results
of algorithms applied on them. This selection of problems and methods with their
parameters is crucial for benchmarking results.

A widely used practice is to select a fixed number of different test instances
of potentially different difficulty. These instances are fulfilling some criteria, e.g.,
difficulty (non-separability, resistance to hill-climbing) and diversity [77]. The results
of newly proposed or otherwise favored methods should be compared with those
of competing algorithms. Here, an important issue is the extensive research and
experimentation already done with plenty of methods on lots of well-known test
functions (see, for example, the COCO platform with data from more than 170
optimization algorithms [35]). Optimization methods stemming from applications
are mostly only able to compete with established algorithms on the chosen instances
if they are extensively tuned on them.

The no free lunch theorem for optimization [78] states that all optimization algo-
rithms have the same performance, if averaged over all possible problems. This
implies that a general-purpose, universal optimization strategy that outperforms com-
peting strategies does not exist. As a consequence, the only way for one method to
outperform another is its adaptation to the structure of the specific problem [38].
Clearly, experimenters and researchers should bear this idea in mind. The core issue
thus lies in the a priori knowledge of the exact problem instance(s) to be solved and
the lacking capability to generalize the results beyond the solved instances. Keeping
that in mind, experiments should be based on test instances (randomly) drawn from
specific problem classes, which is often difficult, because known test suites provide
only a limited number of test functions. Additionally, many commonly used test
suites may not provide any relation to real-world problems.

To overcome these two major issues, Bartz-Beielstein [4] introduced a method-
ology which is applicable to most real-world regression or optimization problems.
The basic idea is to generate problem classes rather than completely different single
instances and the a priori unknown (random) selection of a number of instances to
retrieve generalizable results. The problem classes can be generated by taking data
from real-world problems. Features of the data are extracted and learned, e.g., by
modeling the data. Model parameters can be stochastically varied to retrieve diverse
instances. This methodology, which generates problem classes rather than using one
fixed instance, is constructed in a sophisticated way to extract relevant features from
real-world problems. These features are parametrized, which allows for generation
of infinite number of test problem instances. Mixed statistical models can be used
for the analysis [51], because the instances have to be treated as random variables.

Fischbach et al. [26] applied this approach on real-world data taken from an
industrial experiment. Here, a Kriging model is trained with the data and the model
parameters are changed in a controlled manner. For instance, the nugget parameter,
which enables noise handling, or parameters of the selected correlation function are
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varied. This leads to different predictors that can be used as test instances. To avoid
instances that have no relation to the real world data or instances that are too similar
to each other, statistical measures of (dis-)similarity are applied. Instances that are
outside of certain bounds with respect to some measure of similarity are removed
from the test suite.

Zaefferer et al. [80] applied the above described procedure on a combinatorial
real-world problem. They test different variants of efficient global optimization for
combinatorial problems (CEGO) [81]. CEGO extends the application of surrogate
models for optimization on combinatorial search spaces by employing a distance
measure, e.g., Hamming distance or swap distance. The underlying real-world data
set stems from the field of DNA sequences. The experimentally evaluated sequences
are each assigned a fitness value based on the affinity to some target protein. This
data set allows for the comparison of derived test instances utilizing a Kriging model
predictor with the reference data and reveals a major disadvantage of the prediction,
because the (sometimes extensive) smoothness of the prediction reduces the diffi-
culty of the test instances by eliminating a large portion of the local optima. This is
an inherent problem of test functions based on regression methods—the real-world
data is nearly always subject to smoothing. Hence, Zaefferer et al. proposed a simu-
lation approach to generate test instances avoiding the pitfall of smoothing. Gaussian
process simulation can reflect the behavior or moments of the underlying real-world
problem rather than just the data itself. Besides the potential to avoid smoothing,
Gaussian process simulation may also provide an intuitive way to create varied test
instances from the model, without the need for variating model parameters [81].

However, the simulation approach comes alongwith some practical issues. Firstly,
a number of samples has to be selected as the basis of the simulation. To generate
a test function, the simulated samples are the basis for an interpolation which may
again introduce undesirable smoothing. An estimation of howmany simulation sam-
ples are (at least) necessary to produce a simulation with similar characteristics as
the real world problem is currently not available. Even if available, this number
may grow large, especially for rather rugged fitness landscapes. Hence, the Kriging
simulation may require the computation of large correlation matrices, according to
the dimensionality of the problem instance and the number of points to simulate.
This requires an efficient way to handle large correlation matrices within the Kriging
model.

Summarizing the current state of research, the following questions remain to be
answered:

• What similarity measures and bounds should be used to identify useful test
instances?

• Can landscape features be used to categorize test instances intomeaningful classes,
such that results become more easy to interpret?

• If model-based test instances are generated, how to select a model that is able to
reflect the behavior of the underlying problem?
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• If a certain model is chosen, comparing search procedures that employ the same
modeling methodmay have an advantage over competitors. How can this potential
bias be addressed?

• In the case of simulation-based models, how can the appropriate number of sim-
ulated samples be computed?

• How can Gaussian processes be best simulated for large numbers of samples?
• To receive statistically robust benchmarking results, how many experiments are
required? Howmany instances should be generated, and howmany repeated algo-
rithm runs performed?

• Benchmark datamay notmeet the assumption of standard parametric testmethods.
What performancemeasures and testmethods should be used to analyze such data?

3 Constraints

Optimization is an essential part of any engineering, economic and social system.
Such real world systems usually have a lot of constraints. In order to solve such
problems, optimization algorithms need to be combined with constraint handling
techniques. Within the recent past, several techniques have been developed. They
can be classified as follows [17]:

• Penalty functions are terms,which are added to the objective function. They consist
of a penalty parameter multiplied by a measurement of violation of the constraints
(e.g distance to the feasible region or the amount of violated constraints):

– Death penalty rejects infeasible solutions and generates a new solution as long
as a feasible solution can be found. It is easy to use and no further calculations
are necessary. The main problem is stagnation within small feasible regions.
Furthermore, the user gets no information from the infeasible solutions.

– Static penalty has a fixed penalty factor during the whole optimization process.
– Dynamic Penalty increases the penalty factor during optimization.
– Adaptive penalty techniques set the values of all parameters involved automat-
ically using feedback from the search process without user intervention.

The main advantage of the use of penalty functions is their simplicity; however,
their main disadvantage are the penalty factors, which determine the severity of
the punishment. They must be chosen by the user and their values are problem-
dependent.

• Repair algorithms attempt to find a feasible solution by modifying the infeasible
solutions using one of the following strategies:

– The repair is made for evaluation purposes only.
– The repaired solution replaces the original one. This choice can be made prob-
abilistically.
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• Stochastic ranking introduces a probability value Pf to compare infeasible solu-
tions based on their objective function value. That is, given any pair of two adja-
cent solutions, they are compared according to their objective function values with
probability 1 in case both are feasible; otherwise, this probability is Pf .

• Multi-objective optimization, where the objective and constraint functions are both
minimized. Mezura-Montes and Coello Coello [50] propose a classification of
these methods, based on the way they transform the nonlinear programming prob-
lem into a multi-objective optimization problem:

– Approaches that transform the constrained problem into an unconstrained bi-
objective optimization problem,where the first objective is the original objective
function and the second objective is the sum of constraint violation.

– Techniques that transform the constrained problem into an unconstrained multi-
objective optimization problem, where the original objective function and each
constraint of the original problem are treated as separate objectives.

Solving multi-objective optimization problems can sometimes be more expensive
and complicated than solving the conventional constrained problems. Therefore,
it is often not efficient to use multi-objective optimization, especially when the
number of constraint functions is relatively high.

The simplest strategy to integrate constraint handling into surrogate-assisted opti-
mization is to reject infeasible solutions. This might not be the best choice. Alter-
natively, constraints might be replaced by models as well (especially if constraints
are expensive to evaluate), or integrated into the algorithms. However, the decision
for an optimal strategy is a difficult task. Conventional constraint-based solvers need
a high number of function evaluations. If only the constraint is considered to be
expensive, only this should be considered for surrogate-modeling. Handling con-
straints directly within the algorithm is a relatively new research area. Although
several surrogate-assisted approaches have been proposed in the last few years in
order to reduce the expensive function evaluations, there is no significant progress
in this field. Literature on surrogate modeling for constrained optimization problems
is rare. Employment of fast surrogate models to approximate the objective as well
as all constraint functions is a known approach, but expensive to compute. Forrester
et al. [27] discuss the benefits of different infill sampling criteria used in surrogate-
model-based constrained global optimization. Here surrogate models are used to
approximate both the objective and constraint functions with the assumption that
these are computationally expensive to compute. Singh et al. [63] developed a multi-
objective constrained optimization algorithm, which makes use of Kriging models
in conjunction with multi-objective probability of improvement and probability of
feasibility criteria to drive the sample selection process economically. Hussein et
al. [40] present an approach that proposes a constraint handling method within a
surrogate modeling approach. It can solve difficult constrained test problems from
the multi-objective optimization literature.
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4 Ensembles of Surrogates

In computer-aided sequential parameter optimization the use of surrogates is crucial
and its result strongly depends on the choice of the right surrogate. For choosing
an adequate surrogate, features of the objective function must be considered as well
as the properties of the different available types of surrogates. Hence, we need a
system that takes care of this task. Several different approaches have been proposed
to facilitate or even accomplish this.

The expected improvement (EI) approach handles the initialization and refinement
of a model, but not the selection of the model type. The popular efficient global
optimization (EGO) algorithm uses a Kriging model, because Kriging inherently
determines the prediction variance, which is necessary for the EI criterion [45]. But
there is no proof that Kriging is the best choice.

Alternative surrogates, e.g., regression trees [13], support vector machines [11,
65, 73], or lasso [71] and ridge regression [36] may be better suited, depending on the
problem. For example, Müller and Shoemaker [52] reported that Kriging models and
combinations including Kriging performed in general worse than when radial basis
function models were used. An a priori selection of the best suited model is often
impossible in the framework treated in this chapter, because of the black-box nature
of the underlying optimization problems. Regarding the surrogate choice, the user
can decide whether to use (i) a single, global surrogate during the optimization, (ii)
multi-fidelity surrogates, or (iii) multiple surrogates,Mi , i = 1, 2, . . . , p. Ensembles
provide a simple solution to the problem of selecting the most adequate model,
because they comprehend and aggregate several surrogates. In contrast to multi-
fidelity surrogates, ensembles do not necessarily combine surrogates of different
fidelity. Classical ensemble methods rather combine data driven surrogates of similar
or identical fidelity. One example are random forests, which represent an ensemble
of simple tree-based surrogates.

Several model selection strategies can be implemented. Well-known strategies
are:

• Round robin and randomized choosing are the most simplistic implementations
of ensemble-based strategies. In the former approach, the surrogates are chosen
in a circular order independent of their previously achieved success. In the latter
approach, the surrogate is selected randomly from the list of available surrogates.
The previous success of the surrogate is not a decision factor.

• Greedy strategies choose the surrogate that provided the best function value so
far, while the SoftMax strategy uses a probability vector, where each element
represents the probability for a corresponding surrogate to be chosen [66]. The
probability vector is updated depending on the reward received for the chosen
surrogates.

• Bagging [36] combines results from randomly generated training sets and can also
be used in function approximation.

• Boosting [36] sequentially combines several weak learners to a strong one in a
stochastic setting.
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• Weighted averaging approaches do not choose a specific surrogate’s result but
rather combine it by averaging. Since badmodels should not deteriorate the overall
result, a weighting scheme is introduced. Every model’s result for a single design
point is weighted by its overall error, the sum over all models yields the final value
assigned to the design point. A similar approach is stacking, where the weights
are chosen by an additional training step.

To reduce the computation time, an ensemble of different, possibly local, mod-
els can be generated and evaluated in parallel. Each model may employ the same
candidate solutions (from the population) and the corresponding observations from
expensive function evaluations. Haftka et al. [34] present a review of surrogate meth-
ods that provide parallelization.

Since each of the p surrogates proposes one or even more different candidate
solutions, a selection and/or a combination mechanism is required. Conventionally,
surrogates are assessed and chosen according to their estimated true error [41, 61,
62]. Generally, attaining a surrogate that has minimal error is the desired feature. The
mean absolute error (the L1 norm), the mean square error or its pendant, the root
mean square error, are commonly used as performancemetrics.Methods from statis-
tics, statistical learning [36], and machine learning [53], such as the simple holdout
approach, cross-validation, and the bootstrap are also important in this context.

Several selection and combination mechanisms for surrogates were developed in
the last years.A simple approachdetermines the best surrogate, i.e., the surrogatewith
the smallest prediction error, and determines the next candidate solution based on
that surrogate. Alternatively, candidate solutions from several surrogates can be com-
bined.Zerpa et al. [82] usemultiple surrogates andbuild an adaptiveweighted average
surrogate of the individual surrogates. Goel et al. [30] explore the possibility of using
the best surrogate or a weighted average surrogate instead of one single surrogate.
Model quality, i.e., the errors in surrogates, is used to determine the weights assigned
to each surrogate. Sanchez et al. [58] present a weighted-sum approach for the selec-
tion of surrogate ensembles. The surrogates for the ensemble are chosen based on
their performance and the weights are adaptive and inversely proportional to the local
modeling errors. Tenne andArmfield [69] propose a surrogate-assistedmemetic algo-
rithm which generates accurate surrogates using multiple cross-validation tests.

Huang et al. [39] use several surrogates with different accuracies for a semicon-
ductor manufacturing system. They propose an ordinal transformation to utilize the
results from several less accurate, but computationally cheaper surrogates. The func-
tion values of all solution candidates are evaluated on every cheap surrogate and the
individuals are ranked. The authors observe that despite the big bias in the results
from the cheap surrogates, the relative order among solutions is actually quite accu-
rate. This order can be used to accelerate the selection process in EAs significantly.
To reduce variability and bias in the results from the cheap surrogates, the authors
apply an optimal computing budget allocation scheme.

Multiple surrogates can also be used to partition the search space. The treed Gaus-
sian process approach uses regression trees to partition the search space into separate
regions and to fit local Gaussian process surrogates in each region [32]. Nelson et
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al. [54] propose an algorithm which creates a tree-based partitioning of an aero-
dynamic design space and employs independent Kriging surfaces in each partition.
Couckuyt et al. [20] propose to combine an evolutionary model selection (EMS)
algorithm with the EI criterion in order to dynamically select the best performing
surrogate type at each iteration of the EI algorithm.

Friese et al. [29] presented a method that is able to build an ensemble of heteroge-
neous surrogates using convex linear combinations of the predictions. The method
uses cross-validation on the known set of data points to ensure that the fit of the
ensemble is the best achievable. Due to the convex linear combination, it has been
shown that the ensemble prediction for each point is at least as good as the predic-
tion of the weakest single surrogate but might even exceed the performance of the
strongest surrogate.

Bartz-Beielstein andZaefferer [8] presented a survey ofmodel-basedmethods and
introduced a taxonomy, which is useful as a guideline for selecting adequate model-
based optimization tools. Furthermore, a new approach for combining surrogate
information via stacking was proposed.

Although several approaches exist, and many successful applications were men-
tioned before, important questions remain unsolved and are subject of current
research. They can be listed as follows:

1. Evaluation

• How to select the most adequate surrogate?
• Which properties or features specify the most appropriate model?
• Which is the best method to evaluate the performance of a surrogate with
regard to its different applications?

2. Necessity

• Do better surrogates always result in improved performance?

3. Integration

• How can results from different surrogates be combined?

5 Discrete Problems

Most publications on the use of surrogates in optimization focus on problems where
the search space is continuous, i.e., Rn . There is no reason to assume that only
continuous problems can be expensive-to-evaluate black boxes. Rather, discrete or
combinatorial optimization problemsmay also be subject to these challenges. Exam-
ples for discrete search spaces are, e.g., string, graph, categorical integer, binary or
any kind of mixed space. Due to the difficulty that such discrete data structures may
impose, and the limited amount of existing research, discrete problems are a major
challenge for surrogate-assisted optimization. Someof the fewpublished applications
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in the field of surrogate-assisted combinatorial optimization include examples from
the engineering domain [2, 14, 55, 68, 74], bio-informatics [22, 57] and computer
science [64, 67].

In an abstract and simplified way, surrogate-assisted optimization algorithms can
be split into two interconnected modules: (i) a modeling technique that uses data
to learn the problem structure, and (ii) an optimization algorithm that exploits the
model to determine promising solutions. Clearly, there is a large variety of optimizers
available for discrete and combinatorial search spaces, e.g., various meta-heuristics
like Evolutionary Algorithms (EAs). Hence, the real challenge does seem to reside
with the required modeling techniques.

A recent survey [8] classified potential modeling techniques for discrete problems
into six categories (called strategies). The survey also provides an overview of works
that apply these strategies. The six strategies are as follows:

• The naive approach ignores the discrete structure of the data. This is a viable
method when the discrete problem itself is rather simple and vector-valued. For
example, ordinal integer variables may form discrete search spaces, yet may often
be modeled with standard machine learning approaches.

• Custom-fit solutions can be developed for specific problems. As some recent exam-
ples show [2, 74], surrogate models may be developed to fit specific applications.
While they may not be easily transferred to other applications, their exploitation
of problem knowledge renders them a potentially powerful choice.

• Inherently discrete models, e.g., based on regression trees, may help provide intu-
itive solutions to discrete problems. They may be problematic when discrete vari-
ables are mixed with continuous variables, or when more complex objects are the
subject of the optimization algorithm.

• Mapping approaches try to derive or learn some mapping function, that transfers
from the complex, discrete search space to a space that is more easily handled
by classical machine learning techniques. Dummy variables or contrasts are sim-
ple examples of this approach, while more sophisticated methods such as auto-
encoders have also been proposed in this context [31].

• A modeling algorithm can also extract numeric features of the optimized objects.
Afterwards, these features may be used within a classical modeling framework.
Examples can be found in the context of genetic programming [37].

• Finally, some of the most frequently applied methods in surrogate-assisted opti-
mization include models that exploit measures of similarity or dissimilarity, e.g.,
Kriging and support vector machines. If continuous or Euclidean measures of
(dis)similarity are replaced by their respective discrete equivalents, these models
provide a natural approach towards modeling of discrete data [45, 81].

While not to be dismissed in general, the first three of these strategies are the most
limited ones. Firstly, the naive approach will fail for any more complex problem, and
it is plainly infeasible if the data structure is not vector-valued. Secondly, custom-fit
methods will require significant problem knowledge, which may conflict with the
black-box nature of many problems. Thirdly, inherently discrete models often are
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limited to certain structures, and may become problematic, e.g., when facing mixed
problems.

On the other hand, the latter three strategies are quite promising, mainly due
to their greater versatility. Mapping approaches comprise very classical approaches
such as dummy variable mappings and also state-of-the-art approaches such as auto-
encoders. Feature extraction allows to easily exploit knowledge about the problem,
data-structure or properties of candidate solutions. Finally, similarity-based models
allow to intuitively transfer approaches like Efficient Global Optimization [45, 81]
to the discrete domain.

Despite these promising developments, the discrete domain still poses serious
challenges. Clearly, the discrete case mirrors the continuous case in the sense that all
other challenges described in this chapter apply to both cases. Some of these issues
are even more pressing in the discrete case—the problem of developing benchmarks
that are relevant to real-world problems is one example. While benchmarking is
also quite challenging in the continuous case, the emerging-field nature of discrete
surrogate-assisted optimization is one reason for the lack of openly available test-
cases.

Another issue that may be especially challenging in the discrete domain is dimen-
sionality. As in the continuous case, discrete search spaces of high dimensionality
are especially difficult to deal with. At the same time, some questions lack answers
in the discrete domain: When does combinatorial data become too high-dimensional
for a certain modeling technique? How can we achieve dimensionality reduction of
complex, combinatorial structures such as graphs or trees?

With the introduced strategies in mind, another important question is how practi-
tioners should choose the right strategy for a certain use case. Clearly, expert knowl-
edge may help to resolve this in some cases, for example, when the approaches
require some kind of problem specific prior knowledge, e.g., a suitable map from
the discrete structures to a more manageable one, expressive/information-rich fea-
tures, or an appropriate measure of similarity. Depending on what is available, a
strategy can be chosen. If the available prior knowledge is insufficient to make a
choice between potential modeling strategies, this issue can be framed in the context
of ensemble methods, again mirroring the continuous case.

Finally, there is one particular challenge that arises in the context of combinatorial
optimization with similarity-based models—definiteness. Models such as support
vector machines or Gaussian process regression may require positive semi-definite
kernels [79]. In the discrete case, we will often deal with kernels that are not proven
to be definite. Furthermore, designing definite kernels may be equally infeasible.
Adapting the modeling technique to drop the definiteness requirement may have
severe drawbacks, such as an increased computational effort or a loss of accuracy.
In principle, indefinite kernels could also arise in continuous optimization. Yet, this
is much less an issue due to the availability of many well-established and powerful
kernels in this field.

To summarize, issues like dimensionality, benchmarking, strategy selection and
definiteness will be vital for the further progress in the field of discrete surrogate-
assisted optimization. Importantly, more effort should be spent on the consolidation
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of theory and practice. An increased number of studies on real-world applications
would be very helpful to highlight strengths and weaknesses of themethods that have
been proposed in this field.

6 Multi-objective Optimization

Highly demanding optimization problems often yieldmore than one objective. These
multiple objectives are usually aggregated to a single objective by an aggregation
function, e.g., a weighted sum. This way, a single objective function is received that
ordinary (single-objective) optimization algorithms can deal with. An alternative
approach is to consider all objectives in parallel which particularly makes sense
if objectives are conflicting like quality and price in production or lift and drag in
airfoil design. Of course, surrogates are also used for multiple objective optimization
problems if such problems are highly demanding, e.g., with respect to computational
resources.

In the case of multiple objectives, the mathematical formulation of an objective
function reads like:

f : IRn → IRm, f (x) = ( f1(x), . . . , fm(x)), x ∈ IRn.

In such cases, the concept of Pareto dominance plays a major role when solutions
x, y ∈ IRn are compared based on their objective function values f (x), f (y) ∈ IRm .
A solution x is said to dominate another solution y (x <p y in case of minimization),
if and only if the following holds:

∀i : fi (x) ≤ fi (y) (i = 1, . . . ,m),

∃ j : f j (x) < f j (y) ( j = 1, . . . ,m).

Based on this definition of dominance, special sets in search as well as in objective
space can be identified. The Pareto set is the set of all non-dominated solutions in
the search space. The image of the Pareto set under f in the objective space is then
called the Pareto front. For more details the interested reader is referred to [18, 19,
23].

Although quite a few algorithms for multi-objective surrogate-assisted opti-
mization have already been proposed, the field lacks a common repository where
approaches are collected, benchmarked, or compared. The reason for this is rather
straightforward. The development of such algorithms is application-oriented and the
algorithms have usually been implemented to solve a special industrial or real-word
optimization task. The inventors stem from different research fields having different
scientific backgrounds, speaking different scientific languages, and are often even not
aware of other scientists trying to solve similar optimization tasks. Thus, algorithms
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developed for similar tasks are rather different like ParEGO and RASM, which will
both be introduced in short in the following.

ParEGO (Pareto Efficient Global Optimization) by Knowles [46] is a kind of
an aggregation approach to directly apply the famous EGO algorithm (Efficient
Global Optimization by Jones et al. [45]) to multi-objective problems. In this sense,
it is completely straightforward. The different objective values of a solution are
converted into a single one using an augmented Tchebycheff function. Here, different
weight vectors, drawn randomly, are chosen in each iteration. This allows gradually
approximating the entire Pareto front.

In contrast to the ParEGO approach, approaches like RASM (Rank-based Aggre-
gated Surrogate Models [49]) exist. This is a mono-surrogate approach, i.e., only
one surrogate model is learned during the execution of the algorithm. For other
approaches, multiple surrogate models are learned for the different fitness function
values. In RASM, the surrogate models the Pareto dominance relation by invoking a
rank-SVM framework [44]. Generated offspring are thereby filtered in terms of the
approximated Pareto dominance relation.

In contrast to the mono-surrogate approaches, Emmerich et al. [24] proposed a
way of integrating surrogates into an evolutionary algorithm based on local surrogate
models. These surrogatemodels based onKriging are set up for each individualwhich
is to be evaluated by the costly objective function. Such local surrogates base on a
predefined number of near neighbors and are used for preselecting. The preselection
then leads to a reduced set of offspring to be evaluated by the costly objective function.

The mentioned approaches show only a small fraction of possible methods and
approaches already being used in surrogate-assisted multi-objective optimization. A
short overview of existing libraries was set up during the Surrogate-Assisted Multi-
Criteria Optimization (SAMCO) workshop at the Lorentz Center in Leiden, NL.1

Although this might look like a good first result, there are a lot of open issues to be
dealt with in the future.

As a first and rather important open issue, this simple collection is missing a list of
algorithms contained in each library. Moreover, a detailed comparison of strengths
and weaknesses on every list entry would be highly appreciated. In addition, a lot of
promising research areas exist, e.g.:

• Exploration of multiple objectives with different response surfaces approaches, in
particular focusing on specific requirements of set- and indicator-based optimiza-
tion techniques.

• Integration and testing of new variants of models.
• Integration and testing of new infill criteria.
• Exploration of approaches beyond one model per objective function, in particu-
lar considering model dominance relations and/or model performance indicator
landscapes.

• Integration of ensembles of surrogates.

1See https://www.lorentzcenter.nl/lc/web/2016/764/info.php3?wsid=764 for SAMCO’s website
and http://samco.gforge.inria.fr/doku.php for the list of libraries (both accessed on 30. 11. 2017).

https://www.lorentzcenter.nl/lc/web/2016/764/info.php3?wsid=764
http://samco.gforge.inria.fr/doku.php


Open Issues in Surrogate-Assisted Optimization 239

Finally, benchmarking surrogate-assisted multi-objective optimization lacks rig-
orousness. This would be a highly needed first step to better understand the strengths
and weaknesses of each approach and, thus, provide algorithm recommendations for
users.

7 Further Topics

7.1 Dynamic Problems

A frequently encountered challenge in real-world optimization are dynamic prob-
lems. Here, the location of optima or Pareto fronts change over time. Surrogate mod-
els need to implement newadaptive strategies to identify and track these changes [42].
In this case, we need to rethink the classical use of a surrogate model for the global
approximation of the fitness landscapes. For instance, a static global model, which
is initially fit and sequentially updated, is not applicable as it models a steady, non-
dynamic state. Sequential updates of a model have to consider the dynamic changes
of the landscape over time. A possible approach is to change their purpose from the
pure approximation of the fitness landscape towards a prediction model of future
changes in the landscape. For instance, models from time series forecasting can
support a direct optimization of the objective [25]. Another approach arises from
the usage of dedicated sub-populations in evolutionary algorithms to track moving
optima. These can be assisted by dynamically constructed local regression models to
reduce computational effort in well-explored areas [10, 12, 72]. Further, surrogates
can be utilized to detect drifts in dynamic environments and trigger new optimization
runs [70].

7.2 Dimensionality

If the dimensionality of a problem is large, this has a significant impact on the compu-
tation time of surrogates. Dimensionality has two main repercussions for surrogate-
assisted optimization. Firstly, the search on the surrogate model becomes costly, due
to the large number of variables that need be handled by the optimization algorithm.
Secondly, the surrogate model building procedure itself becomes difficult, because
the dimensionality will increase the number of model parameters. To tackle these
problems, different strategies have emerged [16, 60]. The first is decomposition of
a high-dimensional problem in a set of smaller, independent sub-problems [1, 75].
The second is variable screening to identify the importance of variables by analyzing
their main, interaction and higher order effects. This allows for a reduction of the
search space by elimination of insignificant effects [33, 76]. Mapping techniques
transform the variable space to a feature space of lower dimension, for instance by
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means of a principal component analysis [3, 56]. The last common technique is
space reduction, where the aim is to reduce the search space, e.g., by changing the
boundary constraints of the problem [59].

7.3 Noisy Problems

In noisy problems, the fitness evaluations are subject to uncertainties and devia-
tions. These are common in real-world situations, for instance as an effect of sensory
measurement errors or random effects in computer simulations [9, 43]. Server avail-
ability may not be guaranteed, which results in different calculation times per job. An
integration of resource handling in the optimization/simulation algorithm is needed.

Classical procedure include repetitions of design points and modeling by regres-
sion, such as linear least-squares models. Another example of such a method is the
so-called nugget effect in Kriging. Without this effect, Kriging interpolates the data
by reproducing observations, which is not applicable in noisy environments.With the
nugget effect, it allows deviations from the interpolation by applying regression [21].
Acurrent approach to dealwith noisy problems in evolutionary and surrogate-assisted
optimization is sequential resampling with optimal computational budget alloca-
tion [6, 7, 15].

8 Conclusion

Although surrogate-assisted optimization has been a hot topic formore than a decade,
a lot of research directions still need to be investigated in more detail. This chapter
tried to highlight several issues where the authors see a demand for further investiga-
tion. The chapter outlines these open issues and provides information on how these
fields have already been addressed in the recent past. By that, we hope that users and
developers can learn about recent scientific progress and get an idea where further
research will be required in the future.

Themost important of the presented topics turned out to be benchmarking. Bench-
marking reoccurs in several sections of this chapter, e.g., in multi-objective optimiza-
tion as well as in discrete optimization. Moreover, references and recommendations
for people new to the field, who are trying to apply surrogate assisted algorithm to
their problems, should be derived from benchmarking results. Thus, benchmarking
is an open issue throughout the whole field of surrogate-assisted optimization and a
mandatory step towards identifying strengths and weaknesses of approaches.

The first steps of choosing the right approach, algorithm or model should be made
easier. The authors of surrogate-assisted optimization approaches originate from a
lot of different fields. On the one hand, this is a problem since they have different
backgrounds, speak different scientific languages and name things differently, prefer
different solutions and so on. On the other hand, the diversity of the field enables
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the potential of finding solutions inspired by a wide range of disciplines. Providing
solutions that are relevant and applicable inmany different fields is one of the greatest
achievements one can reach in science.
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