SIMULATION AND OPTIMISATION OF CASTING, ROLLING AND HEAT TREATMENT PROCESSES FOR COMPETITIVE PRODUCTION OF TOPMOST STEEL

Božidar Šarler^{1,5}, Igor Belič², Bogdan Filipič³, Igor Grešovnik^{1,5}, Umut Hanoglu¹, Monika Jenko², Tadej Kodelja⁵, Miha Kovačič^{1,4}, Agnieszka Zuzanna Lorbiecka¹, Miha Mlakar³, Bojan Senčič^{4,5}, Tea Tušar³, Robert Vertnik^{1,4}

¹Laboratory for Multiphase Processes, University of Nova Gorica Vipavska 13, SI-5000 Nova Gorica, Slovenia, ²IMT Ljubljana, Ljubljana, ³Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, ⁴Štore-Steel Technical Development, Štore, Slovenia, ⁵Center of Excellence BIK, Solkan, Slovenia

Abstract. An overview of research and development towards establishing a multiscale numerical model of the production chain of steel semiproducts is presented. Process steps of continuous casting, hot rolling and heat treatment are considered. The final goal of the modelling is the prediction of the product properties as a function of the process parameters of each process step. This is achieved by the coupled physical models of relations between the process parameters and the product macrostructure, microstructure and the product properties. The physical modelling of the microstructure evolution is complemented, replaced or tuned by the artificial intelligence methods. The process is optimised through minimization of two weighted objective functions: the macroscopic one, taking into account the factors such as process productivity, usage of the machines and use of energy and cooling agents, and the microstructure. Experimental validation of the models is described. Several simulation and optimisation examples, associated with the product product properties are shown.