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Abstract

DEMO (Differential Evolution for Multiobjective
Optimization) is a new algorithm for solving multi-
objective problems. This paper presents a comparison
between DEMO and three state-of-the-art algorithms
for multiobjective optimization using a new compari-
son methodology and new test problems. Results show
that DEMO outperforms the other algorithms used in
comparison in four out of nine test problems. On
only one test problem the other algorithms achieve
significantly better results than DEMO, while in the
remaining four test problems DEMO is the second-
best algorithm.

1 Introduction

In the last decade, the ongoing research on evo-
lutionary multiobjective optimization produced sev-
eral successful multiobjective evolutionary algorithms
(MOEAs). With growing number of new algorithms,
the need to properly evaluate and compare their per-
formance yielded many test problems and quality in-
dicators. Unfortunately, the first proposed test prob-
lems were often poorly designed and did not test a
wide range of characteristics. Similarly, many fre-
quently used quality indicators were incapable of indi-
cating whether a nondominated set of solution is bet-
ter than another and were consecutively found to be
unsuitable for evaluating the performance of MOEAs
[10].

Only recently, researchers presented explicit direc-
tions for performance assessment of MOEAs [4]. At
the same time, a new scalable test problem toolkit
was constructed, which allows the user to choose ar-
bitrary levels of complexity [6].

DEMO – a new MOEA based on differential evo-
lution – was introduced in [7], where it outperformed
state-of-the-art algorithms on five test problems. In
the comparison, ‘old’ test problems and quality in-
dicators were used. Following the suggestions from
[4] and using the test problems from [6] this paper

presents a new, thorough comparison between DEMO
and state-of-the-art MOEAs.

2 DEMO

DEMO is a steady-state algorithm for multiobjec-
tive optimization, which uses differential evolution for
constructing new individuals. Therefore it can only
be used on problems, where an individual is encoded
as a real vector. When a new individual, also called
a candidate solution, is constructed, it is compared
to its parent. If the candidate solution dominates the
parent, it replaces the parent in the current popula-
tion. If the parent dominates the candidate, the can-
didate is discarded. Otherwise, if the candidate and
its parent are incomparable, the candidate is added
to the population. After constructing candidates for
each parent individual in the population, the popu-
lation has possibly increased. In this case, it is trun-
cated to the original size using nondominated sorting
and crowding distance metric (as in NSGA-II). This
steps are repeated until a stopping criterion is met.

DEMO is a very simple algorithm and was pre-
sented in [7] in three different variants. Through-
out this paper, only the elementary variant, called
DEMO/parent, is used.

3 Comparison Methodology

This paper follows the comparison methodology
suggested in [4], which consists of the following steps:

1. Run each algorithm several times.

2. Compare the attainment surfaces of the applied
algorithms.

3. Evaluate the algorithms using unary indicators.

3.1 Attainment Surfaces

An attainment surface is ‘the family of tightest
goals known to be attainable as a result of the opti-



problem separability modality bias geometry

WFG1 separable uni polynomial, flat convex, mixed

WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected

WFG3 non-separable uni no bias linear, degenerate

WFG4 separable multi no bias concave

WFG5 separable deceptive no bias concave

WFG6 non-separable uni no bias concave

WFG7 separable uni parameter dependent concave

WFG8 non-separable uni parameter dependent concave

WFG9 non-separable multi, deceptive parameter dependent concave

Table 1: Properties of the applied WFG test problems [6].

mization run’ [3]. When performing multiple runs, a
summary attainment surface is usually drawn. This
is a visual way of summarizing a number of runs of a
multiobjective algorithm. The interpretation of the
50% attainment surface is that, for every point on it,
a point dominating this was obtained in at least 50%
of the runs.

3.2 Quality Indicators

We use three indicators, which evaluate the qual-
ity of the given set of nondominated solutions: ε-
indicator [10], hypervolume indicator [11] and RR in-
dicator [5]. Smaller values of the ε and RR indicator
and bigger values of the hypervolume indicator de-
note better sets.

ε-indicator. The ε-indicator gives the factor by
which a nondominated set is worse than the Pareto-
optimal front with respect to all objectives. The in-
dicator is calculated as:

Iε(A) = inf
ε∈R

{∀w ∈ P ∃z ∈ A : z ºε w},

where ºε denotes the ε dominance relation and P

is the Pareto-optimal front. If P is not known, a
reference set R can be used instead.

Hypervolume indicator. The hypervolume indi-
cator IH(A) gives the hypervolume of that portion of
the objective space that is weakly dominated by the
nondomitated set A. The computation of this indica-
tor demands a reference point, which should be the
worst point in all objectives.

RR indicator. There are three variants of the RR

indicator, namely R1R, R2R and R3R. In this paper
the variant R2R is used, which is calculated as:

IR2R
(A) =

∑
λ∈Λ

(u∗(λ,R)− u∗(λ,A))

|Λ|
,

where R is a reference set, λ is a scalarizing vector
and the utility u∗(λ,A) is the minimum distance of a
point in set A from the reference point.

4 Experimental Setup

The applied test problems were selected from the
WFG test problem toolkit [6], which defines nine test
problems WFG1 – WFG9. This problems comprise
many different characteristics, which are summarized
in Table 1. The WFG toolkit allows the user to
choose the complexity of the problems. In this study,
the problems have 2 objectives and a 10-dimensional
decision space composed by 6 position-related and 4
distance-related parameters.

The performance of DEMO on problems WFG1-
WFG9 was compared to the performance of three
state-of-the-art MOEAs: IBEA [8], NSGA-II [2]
and SPEA2 [9]. All individuals were coded as 10-
dimensional real vectors. The algorithms had pop-
ulation size 100 and were run until 250 genera-
tions were reached. DEMO was implemented in its
DEMO/parent variant with scaling factor 0.5 and
crossover probability 0.3. All other algorithms used
tournament selection with tournament size 2, real-
parameter SBX crossover with probability 1 and ηc =
10, and variable-wise polynomial mutation with prob-
ability 0.1 and ηm = 20. The parameter settings
of all four algorithms were taken from the literature
and were not optimized for this problems. All exper-
iments were repeated 35 times.

Experiments with IBEA, NSGA-II and SPEA2
were performed using PISA interface [1]. PISA was
also used for the complete performance assessment of
all four algorithms: construction of attainment sur-
faces and calculation of quality indicators and statis-
tics.

5 Results and Discussion

Figure 1 presents for each problem its Pareto-
optimal front and 50% attainment surfaces of DEMO
and IBEA as the best algorithm among IBEA,
NSGA-II and SPEA2. Additional information on the
performance of all algorithms is supplied in Figure
2, where the results of the ε-indicator are shown in
box plots. The hypervolume and R2R indicators were
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Figure 1: Pareto-optimal fronts and 50% attainment surfaces of DEMO and IBEA on problems WFG1-WFG9.
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Figure 2: ε-indicator box plots for all algorithms on problems WFG1-WFG9.



IBEA NSGA-II SPEA2

Iε IH IR Iε IH IR Iε IH IR

WFG1 ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

WFG2 ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

WFG3 ↓ ↓ ⇑ ≈ ⇑ ⇑ ≈ ⇑ ⇑

WFG4 ↓ ↓ ↓ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

DEMO WFG5 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

WFG6 ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

WFG7 ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

WFG8 ≈ ↓ ↓ ≈ ≈ ⇑ ⇑ ≈ ⇑

WFG9 ↓ ↓ ↓ ≈ ⇑ ⇑ ≈ ⇑ ⇑

Table 2: Outcomes of the Mann-Whitney significance
test for ε-indicator, hypervolume indicator and R2R
indicator. With ⇑ (↓) we denote that DEMO is sig-
nificantly better (worse) than the algorithm in the
column regarding the underlying indicator. The sign
≈ marks there is no significant difference between
DEMO and the algorithm in the column.

also computed, but their results are not presented in
box plots due to space limitations.

The values of all three indicators were further
tested for significance. We used the Mann-Whitney
test with 5% significance level to check if the results
of DEMO were significantly better, worse or equiv-
alent to the results of IBEA, NSGA-II and SPEA2.
The outcome of this test is presented in Table 2.

The results show that DEMO outperforms the
state-of-the-art algorithms on four problems. DEMO
achieves the worst results only on the problem
WFG5. On the remaining four problems, DEMO is
worse than IBEA, but equivalent or significantly bet-
ter than NSGA-II and SPEA2.

Note that DEMO often achieves a better spread
of solutions than the other algorithms. This is
manifested on problems WFG1, WFG2, WFG6 and
WFG7 (see Figure 1), where IBEA covers only a por-
tion of the Pareto-optimal front while DEMO covers
the entire extent of the front.

6 Conclusion

Following the new comparison methodology and
using new test problems DEMO again showed to be
comparable to state-of-the-art algorithms for multi-
objective optimization. Its main weakness remains
the inability to solve combinatorial problems due to
the use of differential evolution.

Since we only considered two-dimensional prob-
lems, additional experiments are needed for a proper
comparison between DEMO and other MOEAs.

References

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zit-
zler. PISA – a platform and programming

language independent interface for search algo-
rithms. In Evolutionary Multi-Criterion Op-
timization (EMO 2003), pages 494–508, 2003.
http://www.tik.ee.ethz.ch/pisa/.

[2] K. Deb, A. Pratap, S. Agrawal, and T. Meyari-
van. A fast and elitist multiobjective genetic al-
gorithm: NSGA–II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002.

[3] C. M. Fonseca and P. J. Fleming. On the perfor-
mance assessment and comparison of stochastic
multiobjective optimizers. In Parallel Problem
Solving from Nature (PPSN IV), pages 584–593,
1996.

[4] C. M. Fonseca, J. D. Knowles, L. Thiele, and
E. Zitzler. A tutorial on the performance as-
sessment of stochastic multiobjective optimiz-
ers. Tutorial at the Third International Confer-
ence on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2005). http://dbk.ch.umist.ac.

uk/knowles/emo-tutorial-2up.pdf.

[5] M. P. Hansen and A. Jaszkiewicz. Evaluating the
quality of approximations to the non-dominated
set. Technical Report IMM-REP-1998-7, Tech-
nical University of Denmark, 1998.

[6] S. Huband, L. Barone, L. White, and
P. Hingston. A scalable multi-objective test
problem toolkit. In Evolutionary Multi-
Criterion Optimization (EMO 2005), pages 280–
295, 2005. http://www.wfg.csse.uwa.edu.au/
datafiles.html.
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