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Abstract. Differential Evolution (DE) is a simple but powerful evolu-
tionary optimization algorithm with many successful applications. In this
paper we propose Differential Evolution for Multiobjective Optimization
(DEMO) – a new approach to multiobjective optimization based on DE.
DEMO combines the advantages of DE with the mechanisms of Pareto-
based ranking and crowding distance sorting, used by state-of-the-art
evolutionary algorithms for multiobjective optimization. DEMO is im-
plemented in three variants that achieve competitive results on five ZDT
test problems.

1 Introduction

Many real-world optimization problems involve optimization of several (conflict-
ing) criteria. Since multiobjective optimization searches for an optimal vector,
not just a single value, one solution often cannot be said to be better than an-
other and there exists not only a single optimal solution, but a set of optimal
solutions, called the Pareto front. Consequently, there are two goals in multi-
objective optimization: (i) to discover solutions as close to the Pareto front as
possible, and (ii) to find solutions as diverse as possible in the obtained nondom-
inated front. Satisfying these two goals is a challenging task for any algorithm
for multiobjective optimization.

In recent years, many algorithms for multiobjective optimization have been
introduced. Most originate in the field of Evolutionary Algorithms (EAs) – the
so-called Multiobjective Optimization EAs (MOEAs). Among these, the NSGA-
II by Deb et al. [1] and SPEA2 by Zitzler et al. [2] are the most popular. MOEAs
take the strong points of EAs and apply them to Multiobjective Optimization
Problems (MOPs). A particular EA that has been used for multiobjective opti-
mization is Differential Evolution (DE). DE is a simple yet powerful evolution-
ary algorithm by Price and Storn [3] that has been successfully used in solving
single-objective optimization problems [4]. Hence, several researchers have tried
to extend it to handle MOPs.

Abbass [5, 6] was the first to apply DE to MOPs in the so-called Pareto
Differential Evolution (PDE) algorithm. This approach employs DE to create
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new individuals and then keeps only the nondominated ones as the basis for the
next generation. PDE was compared to SPEA [7] (the predecessor of SPEA2)
on two test problems and found to outperform it.

Madavan [8] achieved good results with the Pareto Differential Evolution
Approach (PDEA1). Like PDE, PDEA applies DE to create new individuals.
It then combines both populations and calculates the nondominated rank (with
Pareto-based ranking assignment) and diversity rank (with the crowding distance
metric) for each individual. Two variants of PDEA were investigated. The first
compares each child with its parent. The child replaced the parent if it had a
higher nondominated rank or, if it had the same nondominated rank and a higher
diversity rank. Otherwise the child is discarded. This variant was found inefficient
– the diversity was good but the convergence slow. The other variant simply takes
the best individuals according to the nondominated rank and diversity rank (like
in NSGA-II). The latter variant has proved to be very efficient and was applied
to several MOPs, where it produced favorable results.

Xue [9] introduced Multiobjective Differential Evolution (MODE). This algo-
rithm also uses the Pareto-based ranking assignment and the crowding distance
metric, but in a different manner than PDEA. In MODE the fitness of an in-
dividual is first calculated using Pareto-based ranking and then reduced with
respect to the individual’s crowding distance value. This single fitness value is
then used to select the best individuals for the new population. MODE was
tested on five benchmark problems where it produced better results than SPEA.

In this paper, we propose a new way of extending DE to be suitable for
solving MOPs. We call it DEMO (Differential Evolution for Multiobjective Op-
timization). Although similar to the existing algorithms (especially PDEA), our
implementation differs from others and represents a novel approach to multiob-
jective optimization. DEMO is implemented in three variants (DEMO/parent,
DEMO/closest/dec and DEMO/closest/obj). Because of diverse recommenda-
tions for the crossover probability, three different values for this parameter are
investigated. From the simulation results on five test problems we find that
DEMO efficiently achieves the two goals of multiobjective optimization, i.e. the
convergence to the true Pareto front and uniform spread of individuals along the
front. Moreover, DEMO achieves very good results on the test problem ZDT4
that poses many difficulties to state-of-the-art algorithms for multiobjective op-
timization.

The rest of the paper is organized as follows. In Section 2 we describe the
DE scheme that was used as a base for DEMO. Thereafter, in Section 3, we
present DEMO in its three variants. Section 4 outlines the applied test prob-
lems and performance measures, and states the results. Further comparison and
discussion of the results are provided in Section 5. The paper concludes with
Section 6.

1 This acronym was not used by Madavan. We introduce it to make clear distinction
between his approach and other implementations of DE for multiobjective optimiza-
tion.
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Differential Evolution
1. Evaluate the initial population P of random individuals.
2. While stopping criterion not met, do:
2.1. For each individual Pi (i = 1, . . ., popSize) from P repeat:
(a) Create candidate C from parent Pi.
(b) Evaluate the candidate.
(c) If the candidate is better than the parent, the candidate replaces

the parent. Otherwise, the candidate is discarded.
2.2. Randomly enumerate the individuals in P.

Fig. 1. Outline of DE’s main procedure

Candidate creation
Input: Parent Pi

1. Randomly select three individuals Pi1 , Pi2 , Pi3 from P,
where i, i1, i2 and i3 are pairwise different.

2. Calculate candidate C as C = Pi1 + F · (Pi2 − Pi3),
where F is a scaling factor.

3. Modify the candidate by binary crossover with the parent
using crossover probability crossProb.

Output: Candidate C

Fig. 2. Outline of the candidate creation in scheme DE/rand/1/bin

2 Differential Evolution

DE is a simple evolutionary algorithm that creates new candidate solutions by
combining the parent individual and several other individuals of the same pop-
ulation. A candidate replaces the parent only if it has better fitness. This is a
rather greedy selection scheme that often outperforms traditional EAs.

The DE algorithm in pseudo-code is shown in Fig. 1. Many variants of cre-
ation of a candidate are possible. We use the DE scheme DE/rand/1/bin de-
scribed in Fig. 2 (more details on this and other DE schemes can be found in
[10]). Sometimes, the newly created candidate falls out of bounds of the vari-
able space. In such cases, many approaches of constraint handling are possible.
We address this problem by simply replacing the candidate value violating the
boundary constraints with the closest boundary value. In this way, the candidate
becomes feasible by making as few alterations to it as possible. Moreover, this
approach does not require the construction of a new candidate.

3 Differential Evolution for Multiobjective Optimization

When applying DE to MOPs, we face many difficulties. Besides preserving a
uniformly spread front of nondominated solutions, which is a challenging task for
any MOEA, we have to deal with another question, that is, when to replace the
parent with the candidate solution. In single-objective optimization, the decision
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Differential Evolution for Multiobjective Optimization
1. Evaluate the initial population P of random individuals.
2. While stopping criterion not met, do:
2.1. For each individual Pi (i = 1, . . ., popSize) from P repeat:
(a) Create candidate C from parent Pi.
(b) Evaluate the candidate.
(c) If the candidate dominates the parent, the candidate replaces the parent.

If the parent dominates the candidate, the candidate is discarded.
Otherwise, the candidate is added in the population.

2.2. If the population has more than popSize individuals, truncate it.
2.3. Randomly enumerate the individuals in P.

Fig. 3. Outline of DEMO/parent

is easy: the candidate replaces the parent only when the candidate is better than
the parent. In MOPs, on the other hand, the decision is not so straightforward.
We could use the concept of dominance (the candidate replaces the parent only
if it dominates it), but this would make the greedy selection scheme of DE
even greedier. Therefore, DEMO applies the following principle (see Fig. 3).
The candidate replaces the parent if it dominates it. If the parent dominates
the candidate, the candidate is discarded. Otherwise (when the candidate and
parent are nondominated with regard to each other), the candidate is added
to the population. This step is repeated until popSize number of candidates
are created. After that, we get a population of the size between popSize and
2 · popSize. If the population has enlarged, we have to truncate it to prepare it
for the next step of the algorithm.

The truncation consists of sorting the individuals with nondominated sorting
and then evaluating the individuals of the same front with the crowding dis-
tance metric. The truncation procedure keeps in the population only the best
popSize individuals (with regard to these two metrics). The described truncation
is derived from NSGA-II and is also used in PDEA’s second variant.

DEMO incorporates two crucial mechanisms. The immediate replacement of
the parent individual with the candidate that dominates it, is the core of DEMO.
The newly created candidates that enter the population (either by replacement
or by addition) instantly take part in the creation of the following candidates.
This emphasizes elitism within reproduction, which helps achieving the first
goal of multiobjective optimization – convergence to the true Pareto front. The
second mechanism is the use of nondominated sorting and crowding distance
metric in truncation of the extended population. Besides preserving elitism,
this mechanism stimulates the uniform spread of solutions. This is needed to
achieve the second goal – finding as diverse nondominated solutions as possible.
DEMO’s selection scheme thus efficiently pursues both goals of multiobjective
optimization.

The described DEMO’s procedure (outlined in Fig. 3) is the most elemen-
tary of the three variants presented in this paper. It is called DEMO/parent.
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The other two variants were inspired by the concept of Crowding DE, recently
introduced by Thomsen in [11].

Thomsen applied crowding-based DE in optimization of multimodal func-
tions. When optimizing functions with many optima, we would sometimes like
not only to find one optimal point, but also discover and maintain multiple op-
tima in a single algorithm run. For this purpose, Crowding DE can be used.
Crowding DE is basically conventional DE with one important difference. Usu-
ally, the candidate is compared to its parent. In Crowding DE, the candidate is
compared to the most similar individual in the population. The applied similarity
measure is the Euclidean distance between two solutions.

Crowding DE was tested on numerous benchmark problems and its
performance was impressive. Because the goal of maintaining multiple optima
is similar to the second goal of multiobjective optimization (maintaining diverse
solutions in the front), we implemented the idea of Crowding DE in two addi-
tional variants of the DEMO algorithm. The second, DEMO/closest/
dec, works in the same way as DEMO/parent, with the exception that the can-
didate solution is compared to the most similar individual in decision space. If
it dominates it, the candidate replaces this individual, otherwise it is treated in
the same way as in DEMO/parent. The applied similarity measure is the Eu-
clidean distance between the two solutions in decision space. In the third variant,
DEMO/closest/obj, the candidate is compared to the most similar individual in
objective space.

DEMO/closest/dec and DEMO/closest/obj need more time for one step of
the procedure than DEMO/parent. This is because at every step they have to
search for the most similar individual in the decision and objective space, respec-
tively. Although the additional computational complexity is notable when oper-
ating on high-dimensional spaces, it is negligible in real-world problems where
the solution evaluation is the most time consuming task.

4 Evaluation and Results

4.1 Test Problems

We analyze the performance of the three variants of DEMO on five ZDT test
problems (introduced in [12]) that were frequently used as benchmark problems
in the literature [1, 8, 9]. These problems are described in detail in Tables 1 and 2.

4.2 Performance Measures

Different performance measures for evaluating the efficiency of MOEAs have
been suggested in the literature. Because we wanted to compare DEMO to other
MOEAs (especially the ones that use DE) on their published results, we use
three metrics that have been used in these studies.

For all three metrics, we need to know the true Pareto front for a problem.
Since we are dealing with artificial test problems, the true Pareto front is not
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Table 1. Description of the test problems ZDT1, ZDT2 and ZDT3

ZDT1
Decision space x ∈ [0, 1]30

Objective functions f1(x) = x1

f2(x) = g(x)
(
1−

√
x1/g(x)

)

g(x) = 1 + 9
n−1

∑n

i=2 xi

Optimal solutions 0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , 30
Characteristics convex Pareto front

ZDT2
Decision space x ∈ [0, 1]30

Objective functions f1(x) = x1

f2(x) = g(x)
(
1− (x1/g(x))2

)
g(x) = 1 + 9

n−1

∑n

i=2 xi

Optimal solutions 0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , 30
Characteristics nonconvex Pareto front

ZDT3
Decision space x ∈ [0, 1]30

Objective functions f1(x) = x1

f2(x) = g(x)
(
1−

√
x1/g(x)− x1

g(x) sin(10πx1)
)

g(x) = 1 + 9
n−1

∑n

i=2 xi

Optimal solutions 0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , 30
Characteristics discontinuous Pareto front

hard to obtain. In our experiments we use 500 uniformly spaced Pareto-optimal
solutions as the approximation of the true Pareto front2.

The first metric is Convergence metric Υ . It measures the distance between
the obtained nondominated front Q and the set P ∗ of Pareto-optimal solutions:

Υ =
∑|Q|

i=1 di

|Q| ,

where di is the Euclidean distance (in the objective space) between the solution
i ∈ Q and the nearest member of P ∗.

Instead of the convergence metric, some researchers use a very similar metric,
called Generational Distance GD. This metric measures the distance between

2 These solutions are uniformly spread in the decision space. They were made
available online by Simon Huband at http://www.scis.ecu.edu.au/research/wfg/
datafiles.html.
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Table 2. Description of the test problems ZDT4 and ZDT6

ZDT4
Decision space x ∈ [0, 1]× [−5, 5]9
Objective functions f1(x) = x1

f2(x) = g(x)
(
1− (xi/g(x))2

)
g(x) = 1 + 10(n − 1) +

∑n

i=2

(
x2

i − 10 cos(4πxi)
)

Optimal solutions 0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , 10
Characteristics many local Pareto fronts

ZDT6
Decision space x ∈ [0, 1]10

Objective functions f1(x) = 1− exp−4x1 sin(6πx1)6

f2(x) = g(x)
(
1− (f1(x)/g(x))2

)
g(x) = 1 + 9

n−1

∑n

i=2 xi

Optimal solutions 0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , 10
Characteristics low density of solutions near Pareto front

the obtained nondominated front Q and the set P ∗ of Pareto-optimal solutions
as

GD =

√∑|Q|
i=1 d2i

|Q| ,

where di is again the Euclidean distance (in the objective space) between the
solution i ∈ Q and the nearest member of P ∗.

The third metric is Diversity metric ∆. This metric measures the extent of
spread achieved among the nondominated solutions:

∆ =
df + dl +

∑|Q|−1
i=1 |di − d|

df + dl + (|Q| − 1)d
,

where di is the Euclidean distance (in the objective space) between consecutive
solutions in the obtained nondominated front Q, and d is the average of these
distances. The parameters df and dl represent the Euclidean distances between
the extreme solutions of the Pareto front P ∗ and the boundary solutions of the
obtained front Q.

4.3 Experiments

In addition to investigating the performance of the three DEMO variants, we
were also interested in observing the effect of the crossover probability (crossProb
in Fig. 2) on the efficiency of DEMO. Therefore, we made the following exper-
iments: for every DEMO variant, we run the respective DEMO algorithm with
crossover probabilities set to 30%, 60% and 90%. We repeated all tests 10 times
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Table 3. Statistics of the results on test problems ZDT1, ZDT2 and ZDT3

ZDT1
Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.033482±0.004750 0.390307±0.001876
NSGA-II (binary-coded) 0.000894±0.000000 0.463292±0.041622
SPEA 0.001799±0.000001 0.784525±0.004440
PAES 0.082085±0.008679 1.229794±0.004839
PDEA N/A 0.298567±0.000742
MODE 0.005800±0.000000 N/A
DEMO/parent 0.001083±0.000113 0.325237±0.030249
DEMO/closest/dec 0.001113±0.000134 0.319230±0.031350
DEMO/closest/obj 0.001132±0.000136 0.306770±0.025465

ZDT2
Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.072391±0.031689 0.430776±0.004721
NSGA-II (binary-coded) 0.000824±0.000000 0.435112±0.024607
SPEA 0.001339±0.000000 0.755148±0.004521
PAES 0.126276±0.036877 1.165942±0.007682
PDEA N/A 0.317958±0.001389
MODE 0.005500±0.000000 N/A
DEMO/parent 0.000755±0.000045 0.329151±0.032408
DEMO/closest/dec 0.000820±0.000042 0.335178±0.016985
DEMO/closest/obj 0.000780±0.000035 0.326821±0.021083

ZDT3
Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.114500±0.007940 0.738540±0.019706
NSGA-II (binary-coded) 0.043411±0.000042 0.575606±0.005078
SPEA 0.047517±0.000047 0.672938±0.003587
PAES 0.023872±0.000010 0.789920±0.001653
PDEA N/A 0.623812±0.000225
MODE 0.021560±0.000000 N/A
DEMO/parent 0.001178±0.000059 0.309436±0.018603
DEMO/closest/dec 0.001197±0.000091 0.324934±0.029648
DEMO/closest/obj 0.001236±0.000091 0.328873±0.019142

with different initial populations. The scaling factor F was set to 0.5 and was
not tuned. To match the settings of the algorithms used for comparison, the
population size was set 100 and the algorithm was run for 250 generations.

4.4 Results

Tables 3 and 4 present the mean and variance of the values of the convergence
and diversity metric, averaged over 10 runs. We provide the results for all three
DEMO variants. Results of other algorithms are taken from the literature (see
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Table 4. Statistics of the results on test problems ZDT4 and ZDT6

ZDT4
Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.513053±0.118460 0.702612±0.064648
NSGA-II (binary-coded) 3.227636±7.307630 0.479475±0.009841
SPEA 7.340299±6.572516 0.798463±0.014616
PAES 0.854816±0.527238 0.870458±0.101399
PDEA N/A 0.840852±0.035741
MODE 0.638950±0.500200 N/A
DEMO/parent 0.001037±0.000134 0.359905±0.037672
DEMO/closest/dec 0.001016±0.000091 0.359600±0.026977
DEMO/closest/obj 0.041012±0.063920 0.407225±0.094851

ZDT6
Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.296564±0.013135 0.668025±0.009923
NSGA-II (binary-coded) 7.806798±0.001667 0.644477±0.035042
SPEA 0.221138±0.000449 0.849389±0.002713
PAES 0.085469±0.006664 1.153052±0.003916
PDEA N/A 0.473074±0.021721
MODE 0.026230±0.000861 N/A
DEMO/parent 0.000629±0.000044 0.442308±0.039255
DEMO/closest/dec 0.000630±0.000021 0.461174±0.035289
DEMO/closest/obj 0.000642±0.000029 0.458641±0.031362

[1] for the results and parameter settings of both versions of NSGA-II, SPEA
and PAES, [8] for PDEA, and [9] for MODE3).

Results for PDEA in [8] were evaluated with generational distance instead of
the convergence metric. Because PDEA is the approach that is the most similar
to DEMO, we present the additional comparison of their results in Tables 5
and 6. Once more, we present the mean and variance of the values of generational
distance, averaged over 10 runs.

Table 5. Generational distance achieved by PDEA and DEMO on the problems ZDT1,
ZDT2 and ZDT3

Generational distance
Algorithm ZDT1 ZDT2 ZDT3
PDEA 0.000615±0.000000 0.000652±0.000000 0.000563±0.000000
DEMO/parent 0.000230±0.000048 0.000091±0.000004 0.000156±0.000007
DEMO/closest/dec 0.000242±0.000028 0.000097±0.000004 0.000162±0.000013
DEMO/closest/obj 0.000243±0.000050 0.000092±0.000004 0.000169±0.000017

3 The results for MODE are the average of 30 instead of 10 runs. In [9] no diversity
metric was calculated.
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Fig. 4. Nondominated solutions of the final population obtained by DEMO on five
ZDT test problems (see Table 7 for more details on these fronts). The presented fronts
are the outcome of a single run of DEMO/parent

In Tables 3, 4, 5 and 6, only the results of DEMO with crossover probability
30% are shown. The results obtained with crossover probabilities set to 60% and
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Table 6. Generational distance achieved by PDEA and DEMO on the problems ZDT4
and ZDT6

Generational distance
Algorithm ZDT4 ZDT6
PDEA 0.618258±0.826881 0.023886±0.003294
DEMO/parent 0.000202±0.000053 0.000074±0.000004
DEMO/closest/dec 0.000179±0.000048 0.000075±0.000002
DEMO/closest/obj 0.004262±0.006545 0.000076±0.000003

Table 7. Metric values for the nondominated fronts shown in Fig. 4

Problem Convergence metric Diversity metric
ZDT1 0.001220 0.297066
ZDT2 0.000772 0.281994
ZDT3 0.001220 0.274098
ZDT4 0.001294 0.318805
ZDT6 0.000648 0.385088

90% for all three variants were always worse than the ones given in the tables
and are not presented for the sake of clarity4.

Figure 4 shows the nondominated fronts obtained by a single run of DE-
MO/parent with crossover probability 30%. Table 7 summarizes the values of
the convergence and diversity metrics for the nondominated fronts from Fig. 4.

5 Discussion

As mentioned in the previous section, DEMO with crossover probability of 30%
achieved the best results. This is in contradiction with the recommendations
by the authors of DE [10] and confirms Madavan’s findings in [8]. However, we
have to take these results with caution. Crossover probability is highly related
to the dimensionality of the decision space. In our study, only high-dimensional
functions were used. When operating on low-dimensional decision spaces, higher
values for crossover probabilities should be used to preserve the diversity in the
population.

The challenge for MOEAs in the first three test problems (ZDT1, ZDT2 and
ZDT3) lies in the high-dimensionality of these problems. Many MOEAs have
achieved very good results on these problems in both goals of multiobjective
optimization (convergence to the true Pareto front and uniform spread of solu-
tions along the front). The results for the problems ZDT1 and ZDT2 (Tables 3
and 5) show that DEMO achieves good results, which are comparable to the

4 The interested reader may find all nondominated fronts obtained by the three ver-
sions of DEMO with the three different crossover probabilities on the internet site
http://dis.ijs.si/tea/demo.htm.
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results of the algorithms NSGA-II and PDEA. On ZDT3, the three DEMO
variants outperform all other algorithms used in comparison. On the first three
test problems we cannot see a meaningful difference in performance of the three
DEMO variants.

ZDT4 is a hard optimization problem with many (219) local Pareto fronts
that tend to mislead the optimization algorithm. In Tables 4 and 6 we can see
that all algorithms (with the exception of DEMO) have difficulties in converging
to the true Pareto front. Here, we can see for the first time that there is a notable
difference between the DEMO variants. The third variant, DEMO/closest/obj,
performs poorly compared to the first two variants, although still better than
other algorithms. While the first two variants of DEMO converge to the true
Pareto optimal front in all of the 10 runs, the third variant remains blocked in a
local Pareto front 3 times out of 10. This might be caused by DEMO/closest/obj
putting too much effort in finding well spaced solutions and thus falling behind
in the goal of convergence to the true Pareto optimal front. In this problem,
there is also a big difference in results produced by the DEMO variants with
different crossover probabilities. When using crossover probability 60% or 90%,
no variant of DEMO ever converged to the true Pareto optimal front.

With the test problem ZDT6, there are two major difficulties. The first one
is thin density of solutions towards the Pareto front and the second one non-
uniform spread of solutions along the front. On this problem, all three DEMO
variants outperform all other algorithms (see Tables 4 and 6). The results of
all DEMO variants are also very similar and almost no difference is noted
when using different crossover probabilities. Here, we note that the diversity
metric value is worse than on all other problems. This is because of the non-
uniform spread of solutions that causes difficulties although the convergence is
good.

6 Conclusion

DEMO is a new DE implementation dealing with multiple objectives. The big-
gest difference between DEMO and other MOEAs that also use DE for repro-
duction is that in DEMO the newly created good candidates immediately take
part in the creation of the subsequent candidates. This enables fast convergence
to the true Pareto front, while the use of nondominated sorting and crowding
distance metric in truncation of the extended population promotes the uniform
spread of solutions.

In this paper, three variants of DEMO were introduced. The detailed analysis
of the results brings us to the following conclusions. The three DEMO variants
are as effective as the algorithms NSGA-II and PDEA on the problems ZDT1
and ZDT2. On the problems ZDT3, ZDT4 and ZDT6, DEMO achieves better
results than any other algorithm used for comparison. As for the DEMO variants,
we have not found any variant to be significantly better than another. Crowding
DE thus showed not to bring the expected advantage over standard DE. Because
DEMO/closest/dec and DEMO/closest/obj are computationally more expensive
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than DEMO/parent and do not bring any important advantage, we recommend
the variant DEMO/parent be used in future experimentation.

In this study, we also investigated the influence of three different settings
of the crossover probability. We found that DEMO in all three variants worked
best when the crossover probability was low (30%). These findings, of course,
cannot be generalized because our test problems were high-dimensional (10- or
30-dimensional). In low-dimensional problems, higher values of crossover prob-
ability should be used to preserve the diversity in the population. Seeing how
crossover probability affects DEMO’s performance, we are now interested if the
other parameter used in candidate creation (the scaling factor F ) also influences
DEMO’s performance. This investigation is left for further work. In the near
future, we also plan to evaluate DEMO on additional test problems.
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