IN SEARCH FOR AN EFFICIENT PARAMETER
TUNING METHOD FOR STEEL CASTING

Tea Robic

Department of Intelligent Systems

JoZef Stefan Institute, Ljubljana, Slovenia
tea.robic@ijs.si

Bogdan Filipi¢

Department of Intelligent Systems

JoZef Stefan Institute, Ljubljana, Slovenia
bogdan.filipic@ijs.si

Abstract We deal with the optimization of process parameters in industrial continuous
casting of steel. The process requires fine-tuning of numerous parameters with
respect to the metallurgical cooling criteria to achieve the highest possible quality
of the cast steel. We tackle the problem with various optimization methods:
local optimization, conjugate gradient, downhill simplex and several types of
evolutionary algorithms. They search the parameter space and evaluate candidate
settings using a numerical simulator of the process and a cost function defined
over the metallurgical criteria. We analyze the performance of the methods with
respect to effectiveness and efficiency, and compare the optimized parameter
settings with the manual setting used previously at the steel plant. The best
results are achieved by local optimization and conjugate gradient what suggests
that the applied cost function is not complex.

Keywords: Continuous casting of steel, Process simulator, Numerical optimization meth-
ods, Local optimization, Conjugate gradient, Downhill simplex, Evolutionary
algorithms, Differential evolution, Comparative study

1. Introduction

Continuous casting of steel is broadly used at modern steel plants to produce
steel semi-manufactures. The quality of the cast steel is subject to many process
parameters, such as the casting temperature and speed, coolant temperatures and
flows, etc. The number of possible parameter settings grows exponentially with
the number of parameters considered. Consecutively, finding the parameter

83

84 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

setting that will result in high-quality steel is a demanding task. Because of
high cost and safety risks, the optimization cannot be carried out on a real caster
and we therefore use a numerical simulator of the casting process. However, the
evaluation of solutions on the simulator is a time-consuming process. For this
reason, we need to find the best parameter setting in as few process simulations
as possible. In other words, we search for an optimization method that is
effective and efficient.

Over the last years, several advanced computer techniques have been used
in attempts to enhance the process performance and product properties in con-
tinuous casting of steel. Cheung and Garcia [3] combined a numerical model
of the process with a heuristic search technique to find parameter values that
reduce the proportion of defects in steel production. Filipi¢ and Sarler [4] op-
timized 14 process parameters of an industrial steel casting machine with an
automated software environment consisting of a numerical process simulator
and evolutionary algorithm (EA). Chakraborti and coworkers [1] found genetic
algorithms to be the most suitable technique for optimizing the settings of the
continuous casting mold. In a follow-up study [2] based on heat transfer mod-
eling, they used genetic algorithms to determine the maximum casting speed.

An important question in tuning the casting process parameters is which
optimization algorithm to use. In this paper, we extend the collection of applied
methods from generational EA and steady-state EA, to differential evolution
and other optimization methods (local optimization, conjugate gradient and
downhill simplex). By investigating a variety of approaches, we hope to enhance
the knowledge on suitability of the optimization methods for this problem.

In Sect. 2 we outline the process of continuous casting of steel, present the
simulation-based optimization procedure, and give an example of the optimiza-
tion problem. The applied methods are described in Sect. 3. The numerical
experiments and results are presented in Sect. 4 and discussed in Sect. 5. The
paper concludes with a summary of the work done and directions for further
investigation.

2. Optimization of Continuous Casting of Steel
2.1 The Process

The process of continuous casting of steel (schematically shown in Fig. 1) is
a complex metallurgical process where molten steel is cooled and shaped into
semi-manufactures of desired dimensions. The main components of the casting
system are the ladle, tundish, mold and cooling subsystems. The ladle is used
to transfer batches of molten steel from a steel-making furnace into the tundish.
The tundish holds steel while casting is carried out. It ensures the continuity
of steel flow into the mold. The mold is the heart of the casting system. It
extracts heat from the molten steel and initiates the formation of a solid shell on

In Search for an Efficient Parameter Tuning Method for Steel Casting 85

ladle

tundish

primary
cooling

secondary cooling

I\

with water sprays
ﬂ« cutoff point

support rolls

liquid pool

solidifying
shell

Figure 1. Schematic view of the continuous casting of steel.

the slab coming out of the mold. The mold oscillates to prevent the steel from
sticking to the copper-alloy plates of the mold. Heat extraction is performed by
coolant flowing through channels built in the mold. This represents the primary
cooling subsystem of the caster. The heat extraction and solidification continue
as the slab, led by support rolls, passes through the caster. Along the moving
slab water sprays are located which form the secondary cooling subsystem.
Cooling in this region results in complete solidification and the solidified slab
is finally cut into pieces of the ordered length.

2.2 Simulation-Based Optimization Procedure

To tune the process parameters in continuous casting of steel, we have imple-
mented an optimization environment consisting of the process simulator [12], a
cost function and various optimization algorithms. Initially, given the process
parameter values, the simulator computes the temperature field in the slab and
extracts the metallurgical criteria of critical importance for the steel quality.
Afterwards, the cost function value is calculated from the obtained criteria.
The cost value is used by the applied optimization algorithm to generate new
parameter setting and send it to the simulator. This represents one step in the
simulation-based optimization procedure that operates in this manner until the
stopping criterion is met.

In this study, five of the metallurgical criteria c; provided by the simulator [12]
are considered: maximum cooling and reheating rates on the slab surface in the
secondary cooling zone, maximum surface temperature in the slab unbending
point, and maximum negative and positive temperature deviations on the slab

86 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

surface. They are taken into account in the cost function f as

¢ — Cmm
f Z max _ mln’ (1)

where ¢;'" and ¢;"** are the lower and upper bounds for the i-th criterion. The
bounds have been determined empirically. The criteria are defined in such a way
that a lower value indicates a more satisfied criterion. Thus the optimization
task is to find a parameter setting that will result in the minimum value of the
cost function f.

As the evaluation of parameter settings with the simulator is time-consuming,
a database of the evaluated solutions is maintained. When a solution is to be
evaluated, the optimization algorithm first checks for the presence of the solution
in the database and activates the simulator only if the solution has not yet been
evaluated.

max

23 An Example of the Optimization Problem

Let us consider an example of the optimization problem, where 12 spray
coolant flows in the secondary cooling zone are subject to optimization. Table
1 shows the parameter search space for this problem. The total number of
possible parameter settings equals to 5'2 ~ 2.4 - 10%. The task is to find the
parameter setting * = (x1,...,212) that minimizes the cost function f.

Table 1. An example of the optimization problem: the search space.

Coolant flow Min. value Max. value Discretization step Number of
number [1/min] [1/min] [1/min] values
1 120 160 10 5

2 65 85 5 5

3 200 280 20 5

4 190 270 20 5

5 160 240 20 5

6 150 230 20 5

7 120 160 10 5

8 140 180 10 5

9 120 160 10 5

10 120 160 10 5

11 130 170 10 5

12 120 160 10 5

3. Optimization Methods

For the optimization of continuous casting of steel, six optimization methods
were tested. They include single-point iterative procedures and population-

In Search for an Efficient Parameter Tuning Method for Steel Casting 87

based algorithms, gradient and evolutionary methods, as well as stochastic
and deterministic approaches. All methods use real vector representation of
candidate solutions = = (z1,...,x,), where n is the number of parameters to
be optimized. The search space is discretized. The stopping criterion is the
predefined number of the examined solutions. The methods are described in
the following subsections.

3.1 Local Optimization

Local optimization (LO) is a simple optimization method that searches for
an optimum by examining the neighborhood of the current solution. The points
x = (x1,...,zy)andy = (y1,...,yn) are defined to be neighbors if, according
to the given discretization, they differ by one step in exactly one dimension:

x = Yy, £ dy, for an arbitrary k € {1,...,n}, and z; = y; forall i # k. (2)

Therefore, every point of the n-dimensional search space (except for the border
points) has 2n neighbors. The LO procedure is presented in more detail in
Algorithm 1.

Algorithm 1: Local optimization (LO)

randomly select an initial solution x

initiate direction d := 0

while stopping criterion not met do
for i := 1 to num_neighbors do

if d = 0 then

randomly select neighbor y from the neighborhood of x
else

get neighbor in the given direction y := = + d
end if

if y is better than = then
remember directiond 1=y — x
replace solution x := y
break
else
reset direction d := 0
end if
end for
if stuck in a local optimum then
randomly select a new solution x
end if
end while

88 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3.2 Conjugate Gradient

The conjugate gradient method (CG) is used for minimizing functions f,
for which the gradients f’ and f” can be computed. The method consists of
iterative steps in which the search of the space is made in conjugate directions.

Two vectors (or directions) d; and d; are conjugate with regard to the sym-
metric positive definite matrix A if

df'Adj = 0. 3)

In an n-dimensional space, there are n conjugate directions. In CG the direc-
tions are conjugate with regard to the Hessian matrix f” (that can be approx-
imated by its diagonal). The CG method is outlined in Algorithm 2. Further
details on the method can be found in [11].

Algorithm 2: Conjugate Gradient (CG)

randomly select a starting point x (o)
calculate the preconditioner M (the diagonal of the Hessian matrix f”)
compute the first search direction as d gy = —M_lf’(a:(0>)
while stopping criterion not met do
fori:=0ton —1do
with the Newton-Raphson method find cv(;) that minimizes f(x ;) + a()d())
the next point is x(; 1) = T () + a)d)
the next search direction is d(; 1) = —M ' f' (2 (i+1)) + B+ des)
(the coefficient 3(; 1) is calculated with the Polak-Ribiere method)
end for
restart from the best point found in the direction d(o) = —M ' f'(z(n))
end while

simplex at the
beginning of a step

Phigh
Plow
(a) (c) .
simplex after
Prefl contraction
S|mplgx after Peont
reflection
(b) @ A .
» P simplex after
exp A .
/ multiple
- contraction
simplex after
reflection and Plow
expansion

Figure 2. Simplex at the beginning of a step and possible outcomes for a step of DS [8].

In Search for an Efficient Parameter Tuning Method for Steel Casting 89

33 Downhill Simplex

The downhill simplex method (DS), also named the Nelder-Mead method
after its authors [7], searches for a minimum of an n-dimensional function
by making use of a simplex. A simplex is a geometrical figure consisting, in
n dimensions, of n + 1 vertices and all their interconnecting line segments,
polygonal faces, etc.

DS starts with a randomly chosen simplex and takes a series of steps (reflec-
tions, expansions and contractions) which transform the simplex and move it
towards the minimum. At every step the point of the simplex with the highest
function value (pp;gn — “highest point™) is transformed into a lower point (see
Fig. 2 and Algorithm 3).

Algorithm 3: Downhill Simplex (DS)

randomly choose the vertices of an initial simplex
while stopping criterion not met do
if simplex too small then
construct a new simplex with p;,., and n random points
end if
reflect prign through the opposite face of the simplex (Fig. 2(a))
if prcyi is lower than p;o., then
expand the simplex in the same direction (Fig. 2(b))
if pesp is lower than p,..y; then
replace prign With pesp
else
replace Phigh with DPrefl
end if
else if p..y; is lower than ppigs then
replace prign With presi
else
contract the simplex (Fig. 2(c))
if Pcont is lower than ppign then
replace prign With peont
else
contract the simplex around p;o., (Fig. 2(d))
end if
end if
end while

34 Generational Evolutionary Algorithm

The generational evolutionary algorithm (GEA) is an optimization method
that imitates the principles of Darwinian theory of evolution. By applying
selection, crossover and mutation to a population of solutions, it creates better

90 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

and better offspring populations (Algorithm 4). This method was originally
studied in [6] and made popular by [5].

Algorithm 4: Generational Evolutionary Algorithm (GEA)

fill up the initial population pop with random solutions
while stopping criterion not met do
create an empty population new_pop
repeat
select two parents from pop
create two offspring by crossing the parents
mutate the offspring
add the offspring into the new population new _pop
until new_pop full
copy new_pop into pop
end while

3.5 Steady-State Evolutionary Algorithm

The steady-state evolutionary algorithm (SSEA) is similar to GEA, with the
exception of maintaining a single population of solutions. Like in GEA, at
every step two offspring are created by applying the evolutionary operators.
But instead of filling a new population, the offspring replace the worst two
individuals in the current population (Algorithm 5).

Algorithm 5: Steady-State Evolutionary Algorithm (SSEA)

fill up the population pop with random solutions
while stopping criterion not met do

select two parents from pop

create two offspring by crossing the parents

mutate the offspring

replace the two worst individuals in pop with the offspring
end while

3.6 Differential Evolution

Differential evolution (DE) is a population-based algorithm for optimizing
functions on totally ordered spaces. It was developed by Price and Storn [9]
as a variant of an evolutionary algorithm. The basic idea of DE is outlined in
Algorithm 6.

In Search for an Efficient Parameter Tuning Method for Steel Casting 91

Algorithm 6: Differential Evolution (DE)

evaluate the initial population P of random solutions
while stopping criterion not met do
for i := 1 to pop_size do
randomly select three different individuals I, I2, I3 € P
generate the candidate solution as C' := I+ weight-(I2 — I3)
alter the candidate by binomial crossover with the i-th individual
evaluate the candidate
if the candidate is better than the i-th individual then
replace in P the i-th individual with the candidate
end if
end for
end while

4. Numerical Experiments and Results

The optimization methodology was experimentally applied to continuous
casting of the construction steel AC-0113 at the Acroni steel plant in Jesenice,
Slovenia. The computation was performed for a slab with the cross-section
of 1.03 m x 0.20 m. Out of more than 20 influential process parameters, 12
spray coolant flows in the secondary cooling zone were subject to optimization
(see Sect. 2.3). The task was to check whether the manual coolant flow setting
used at the plant could be improved and which optimization method is the most
suitable for this problem. The calculations were run on a 1.8 GHz Pentium IV
computer where the execution time to evaluate a solution through numerical
simulation was 2.5 minutes.

All applied methods used real vector representation of candidate solutions.
Every method was run 5 times and in each run 400 solutions were evaluated
(calculated with the simulator or read from the database). LO had no addi-
tional parameters. CG was implemented as shown in Algorithm 2, i.e. with
preconditioning, Newton-Raphson and Polak-Ribiere methods. DS used re-
flection factor 1, contraction factor 0.5 and expansion factor 2. The evolution-
ary methods (GEA, SSEA and DE) operated on populations of 20 individuals.
Both GEA and SSEA used tournament selection with the size of tournament 2,
crossover probability 0.8 and mutation probability 0.05. DE applied the strat-
egy DE/rand/1/bin [10] with crossover probability 0.5 and multiplication factor
0.5.

The results of the applied optimization methods are presented statistically in
Table 2, while Fig. 3 shows the improvement of the best solution cost during
the optimization process. The plots represent averages over five algorithm runs
and are compared with the cost of the manual setting. They are divided into
two graphs to enable a better view of the results.

92 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.45 —
: manual setting -~
| downhill simplex
T conjugate gradient ------—-
2.35 local optimization 1
2.25 1
E 215 | 1
2.05 1
1.95 - 1
1.85 ‘
0 200 300 400
Evaluations
2.45 ——
manual setting -----
generational EA
differential evolution ---—-----
2.35 ‘ steady-state EA ——]
1)
o
o

0 100 200 300 400
Evaluations

Figure 3. Performance of the optimization methods averaged over five runs.

Table 2. Results of the applied optimization methods in terms of cost given by Eq. (1).

Method Name Best Average Worst St. dev.
Generational EA 1.8638 1.8892 1.9137 0.0192
Downhill Simplex 1.8598 1.8775 1.8879 0.0137
Differential Evolution 1.8641 1.8741 1.8935 0.0116
Steady-state EA 1.8587 1.8622 1.8654 0.0028
Conjugate Gradient 1.8587 1.8612 1.8645 0.0027
Local Optimization 1.8587 1.8587 1.8587 0

All methods significantly improve the performance of the manual setting. LO
outperforms all other methods by always reaching the best solution in less than

In Search for an Efficient Parameter Tuning Method for Steel Casting 93

300 evaluations. The second best method is CG that makes a huge improvement
in its first step (for one step the method needs 25 evaluations). SSEA is the best
evolutionary method. The other methods (DE, GEA and DS) performed a little
worse.

5. Discussion

The analysis of the solutions shows that the best result (cost value 1.8587)
is always reached in the same point of the search space. This fact and superior
performance of LO and CG over other methods indicate that the optimized func-
tion is probably unimodal. Although this outcome was not expected, it can be
explained through the underlying physics. The 12 spray coolant flows subject
to optimization are namely highly independent and in either monotonic or uni-
modal relationshis with the metallurgical criteria. Consequently, the resulting
12-dimensional cost function is also not very complex.

Although not as successful as LO, the applied evolutionary methods produce
good results too, but they need more evaluations to converge (this is especially
true for DE). They serve as a good comparison to LO and CG, since they are
more robust and achieve good results also on more complex functions.

Our findings could be applied to similar optimization tasks in material pro-
cessing. The physics behind such problems usually makes the search space
simpler than expected. It is therefore a good idea to try methods like LO or CG
in addition to EAs.

6. Conclusion

In the presented study, we have compared the performance of different op-
timization methods on process parameter tuning in continuous casting of steel.
We have used an automatic optimization procedure based on a process simula-
tor, compound cost function and various numerical optimization methods. All
applied methods considerably improved the manual setting of process param-
eters. The best results were achieved by local optimization and the conjugate
gradient method. These findings suggest that the cost function is of low com-
plexity, most probably unimodal. However, our results are founded on certain
assumptions, including the parameter intervals and discretization of the search
space. With a finer discretization, the applied methods would probably perform
differently. Testing the methods on different discretizations remains a task for
further investigation. In addition, the improved coolant flow settings need to
be practically evaluated at the plant.

Acknowledgment

The work presented in the paper was supported by the Slovenian Ministry
of Education, Science and Sport under Research Programme P0-0541-0106

94

BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Intelligent Systems, and the European Commission under project COST 526:
Automatic Process Optimization in Materials Technology (APOMAT).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

N. Chakraborti, R. Kumar, and D. Jain. A study of the continuous casting mold using
a pareto-converging genetic algorithm. Applied Mathematical Modelling, 25:287-297,
2001.

N. Chakraborti, R.S.P. Gupta, and T.K. Tiwari. Optimisation of continuous casting process
using genetic algorithms: Studies of spray and radiation cooling regions. lronmaking and
Steelmaking, 30:273-278, 2003.

N. Cheung and A. Garcia. The use of a heuristic search technique for the optimization
of quality of steel billets produced by continuous casting. Engineering Applications of
Artificial Intelligence, 14:229-238, 2001.

B. Filipi¢ and B. Sarler. Evolving parameter settings for continuous casting of steel. In:
Proceedings of the 6th European Conference on Intelligent Techniques and Soft Computing
EUFIT’98, Aachen, Germany, 1998, Vol. 1, pp. 444-449.

D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, 1989.

J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, 1975.

J.A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308-313, 1965.

W.H. Press. Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge
University Press, New York, 1989.

K.V. Price and R. Storn. Differential evolution — a simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, 22(4):18-24, 1997.

K.V. Price and R. Storn. Differential evolution homepage (http://www.icsi.berke-
ley.edu/"storn/code.html).

J.R. Shewchuk. An introduction to the conjugate gradient method without the agoniz-
ing pain. Technical report, School of Computer Science, Carnegie Mellon University,
Pittsburgh, 1994 (http://www.cs.cmu.edu/"jrs/jrspapers.html).

B. Sarler. Numerical procedure for calculating temperature field in continuous casting of
steel. Metals, Alloys, Technologies, 30:217-223, 1996.

