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Abstract— Covid-19 has so far affected every country in the 
world. The Non-Pharmaceutical Interventions (NPIs) by 
governments have proven themselves quite effective at stopping 
the spread of infections, but when applied in a very strict and long-
lasting manner could have devastating consequences for the 
economic and social well-being of the population. XPRIZE and 
Cognizant organized the $500,000 XPRIZE Pandemic Response 
Challenge, where the participants were tasked to find good trade-
offs between the costs and benefits of NPIs. This paper describes 
the solution by the team JSI vs Covid that placed second and won 
a $250,000 prize. The described solution uses an SEIR model to 
predict the spread of the infections, with the model parameters 
being dynamically changed based on active NPIs using machine 
learning. It then uses multi-objective optimization to find the 
desired trade-offs between NPI strictness and effectiveness. 
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I. INTRODCUTION 
The Covid-19 pandemic has negatively affected the whole 
world, with the virus spreading extremely fast. While non-
pharmaceutical interventions (NPI) like closing schools and 
cancelling public events have proven effective at containing the 
pandemic [1, 2], they come with a large cost to the economy, 
and with a quality of life decrease for the general population. 
Policy-makers were thus given a challenging task of balancing 
the spread of the pandemic with the socio-economic costs of the 
NPIs. This task was made even harder due to how 
unprecedented the situation is and due to lack of reliable data 
about the exact extent to which the NPIs affect the spread of the 
virus.  
 
As time goes on, however, more and more data about the 
pandemic becomes available (e.g., the number of infections in 
each country) and one could use artificial intelligence to 1) 
understand the effect of various NPIs, and 2) propose sensible 
intervention plans based on historical evidence and not just 
based on the intuition of policy makers. This was the exact idea 
of the XPRIZE: Pandemic Response Challenge [3] where two 

hundred research teams from all around the world competed to 
achieve the two previously mentioned tasks and to win the 
$500,000 prize purse (sponsored by Cognizant [4]).  In this 
paper we describe our submission to this competition, how we 
tackled both problems and ultimately ended up as being one of 
the two winners [3].  
 
First, in Section II we describe in more detail the two tasks 
given by the competition, then in Section III we describe our 
methods, and show the results in Section IV. Finally, we 
conclude in Section V. 

II. THE PANDEMIC RESPONSE CHALLENGE 
The competition was split into two phases. In the first one the 
“Prediction” phase the competitors had to predict the number of 
infections for 236 regions, given the NPIs that were in place in 
these regions (regions correspond to most countries in the world 
and some regions inside countries such as US states. To ensure 
fairness, the submitted models were tested each day after 
submission, for months, and were given actual NPIs in place at 
that time period and had to predict the number of infections 
from the submission date on. The models could use any other 
additional data if it was provided before the submission date.  
 
In the second “Prescription” phase, the competitors had to 
create intervention plans for different situations (different 
countries and time periods) for two months in advance. There 
were 12 possible NPIs to pick from an OxCGRT database [5], 
each with different levels of strictness. An intervention plan 
could consist of any combination of these, and could change 
from day to day. For example, a possible intervention plan 
would be to use strict NPIs at the beginning, but gradually lower 
the stringency as time moves on and the predicted number of 
infections’ fall. The prescribed intervention plans obviously 
could not be tested in real life so their quality was assessed 
based on two criteria, the predicted number of infections and 
the socio-economic cost. The prediction was made by the 
“standard predictor” provided by the organizers [6]. The socio-



economic cost of each NPI was provided by the organizers 
during the evaluation phase the submitted prescriptor was 
required to work with any cost provided. This mimics the real-
life application of policy makers providing their own custom 
costs, fitted to the needs of their country. Each competitor could 
prescribe up to ten different intervention plans with different 
trade-offs between the two criteria. An intervention plan was 
considered better than another if it dominated it, which means 
that it was better on one criterion and not worse on the other. A 
solution (intervention plan) is said to be nondominated if there 
is no solution that dominates it. In a favourable case, the ten 
proposed plans should be spread all along the Pareto front - the 
image of all nondominated solutions. 

III. METHODS 

In Section III.A and Section III.B we describe our methods for 
the “Predictor” and “Prescription” phase of the competition, 
respectively.  

A. Predictor 
The goal of the “Predictor” phase was to predict the number of 
infections for each country/region for each day, months in 
advance, given the NPIs in that country/region. We did so by 
using a SEIR epidemiological model that was improved so that 
its “spreading rate” parameter β can dynamically adapt to the 
changes to the NPIs. The mapping between the NPIs and the 
spreading rate parameter was done using machine learning. 
 

1) Datasets  
We worked with two datasets. The first dataset consisted of 
daily reported infections and was used to fit the SEIR model 
(Section III.A.2). This data was collected from the Oxford 
Covid-19 Government Response Tracker (OxCGRT) database 
[5]. The second dataset was used for the β prediction model. 
While the main factors affecting the speed of the spread are the 
active NPIs, we collected the data on all other conditions we 
believed could be affecting it. We started with a dataset of 93 
static (one per country) features such as development, culture, 
health, etc., which were extracted in our previous research on 
Covid-19 [7]. We then added “dynamic” features that could 
change day-by-day, namely the weather (temperature, 
humidity, etc.) and different NPIs collected from the OxCGRT 
database.  
 
All the data was used for fitting the epidemiological model 
(Section III.A.3), but only a subset of 108 countries for training 
the machine learning model (Section III.A.4). The inclusion 
criteria for a country to be part of the training set were: 
sufficient data for that country, and negative correlation 
between NPI stringency and number of infections. The latter 
condition was due to some countries having inadequate testing 
and thus inaccurate data.  

 
2) SEIR epidemiological model 

One of the most commonly used approaches to predict the 
number of new daily infections are the epidemiological models. 
We used the standard SEIR model that uses Susceptible, 
Exposed, Infected and Removed compartments (FIGURE 1).   

 
FIGURE 1: Scheme of SEIR model 

 
The model uses parameters β, σ and γ that determine the 
transition probabilities from one (compartment) state to another 
as shown in the system below.  
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The β parameter (infection rate) was fitted based on the 
historical data using least square error, while the 𝜎 (incubation 
period) and γ (recovery rate) were set as static values based on 
the values found in the literature. The fitted β parameter would 
then be used as the prediction target for the machine learning 
model (Section III.A.3). 
 

3) Fitting β 
Since the βs are constantly (and sometimes drastically) 
changing over time in ways that cannot be modelled using a 
simple function, we decided to split the data from each region 
into intervals and fit them separately. These intervals were 
created in two different ways:  
 depending on NPIs – if they changed by more than a 

predetermined threshold value a new interval is started, and  
 depending on the infection trends – the intervals were 

created so that the number of infections were either rising 
or falling on each interval. The fitting was done separately 
on each set of intervals, and then we determined for each 
region which fitting gave better prediction accuracy and 
used those βs as the ground truth for the machine learning 
models in the next step. 

 
4) Predicting β 

Fitted βs from previous subsections were then used to create a 
machine learning problem where the goal was to predict βs from 
the features. To predict future infections, a sequence of βs were 
calculated from future data (e.g., NPIs) and then inserted into 
the SEIR model. 
 
 

5) Other Components 
The submitted pipeline works as follows:  
1. If the NPIs in the given region have not changed after 

submission, take the last pre-calculated β for that region 
and use it in the SEIR model to predict the daily number of 
infections. 

2. If the NPIs in the given region have changed, first use the 
features for that region (mainly the provided NPIs) in 



conjunction with the created machine learning model to 
calculate the β parameter for each day.  Then use calculated 
β in the SEIR model to predict the daily number of 
infections.  

3. In all cases, when β changes the transition is made 
smoother by using exponentially weighted averages of the 
β values. 

4. A linear model was used for β prediction. We performed 
feature selection with 153 collected features and those that 
showed by far the strongest correlation with β were the 
NPIs for the (t-14)-th day. 

 
An exception to this procedure was made in roughly 40 regions 
where the SEIR model was not a good fit on the historical data, 
usually due to the too low number of daily infections. In these 
cases, we took the last month of known data for that region and 
then found other regions in the past that exhibited a similar 
infection pattern, i.e., their number of infections closely 
matched, when normalized for the population. We looked at 
what happened in those regions after the inspected period, and 
used this to predict the future in the original period. Since the 
predictions made in step 3 are expected to be of length less than 
180 days, we used the standard procedure to create the 
remainder of the predictions. 

B. Prescriptor 
In the second competition phase we had to create intervention 
plans for different time periods and for different regions. Such 
intervention plans should have good trade-offs between the 
stringency of the interventions and the projected infections that 
result from them. Such problems are commonly tackled with 
multi-objective evolutionary algorithms (MOEAs) that imitate 
biological evolution to search the space of possible intervention 
plans, evaluate them in terms of their stringency and the number 
of infections, and find plans with good trade-offs between the 
objectives. We were facing a time constraint as well - we only 
had 6 hours to evaluate 235 regions (90 seconds on average per 
region). We used the NSGA-II [8] algorithm for the task. The 
intervention plans were represented as vectors, where the i-th 
variable represents what is the aggregated socio-economic costs 
of all NPIs to be used on the i-th week.  
 
We decided to optimize with the granularity of one week 
instead of one day for two reasons: 1) it is unrealistic to expect 
real-life policies to change with a higher frequency and 2) the 
quality of the solutions did not substantially improve when 
using a smaller granularity. It is of note that this granularity 
parameter is adjustable if our system would be used in practice 
and a decision maker would so desire.  
 
To evaluate such a vector of socio-economic costs during the 
optimisation process, they are first expanded so that each 
variable represents one day, then for each day the NPIs are 
selected so that they do not exceed the cost for that day and so 
that they are as effective in reducing the number of infections 
as possible. The effectiveness of every NPI combination 
according to the “standard predictor” was precomputed in 
advance, so that the selection in the previous step can be done 

with no computational overhead. Finally, the resulting matrix 
of NPIs for each day is sent to the standard predictor. The 
optimisation could in theory directly use the matrix 
representation where each value represents the presence (and 
strictness) of each NPI, but we have empirically evaluated that 
this only increases the search space and thus search time, 
without providing better solutions. 
 
 The resulting intervention plans, made by the described 
optimisation process, provided great trade-offs but the method 
turned out to be computationally too expensive, as each call to 
the standard predictor needed a few seconds for evaluation – 
and each region needed roughly 10,000 evaluations for the 
optimisation process to converge. Given the time constraint this 
process was much too slow.  
 
We thus developed two methods derived from this standard 
multi-objective optimisation approach, and then combined 
them at the end. 
 

1) Pre-computed plans 
Our first method was to compute several plans in advance, and 
then for a specific region during the competition evaluation 
select the plan that is the most appropriate for the current 
situation in that region. The criteria for being “most 
appropriate” were the following: the desired length of 
prescription (we pre-calculated plans for 90-, 75-, 60- and 45-
days, and selected the one closest to the desired length), 
infection trend (infections raising, falling, stable, raising fast, 
falling fast), and size of the country/region (small, large). For 
each of the listed combinations, ten prescriptions were pre-
calculated and could be used for a given region during the 
competition. Since the socio-economic costs were still 
unknown at the time of the submission, our pre-calculated 
intervention plans only specified the maximum socio-economic 
costs for each day – which is in any case the natural 
representation of our optimisation process.  Then during the 
evaluation, when actual costs for each NPIs were given, we 
selected the most effective NPIs as previously described.  

2) Optimisation with the SEIR model 
The second method used similar optimisation, but with two 
exceptions: 1) this optimisation was not done in advance, but 
directly for the country/regions and time intervals of interest, 
and 2) a fast surrogate model was used instead of the standard 
predictor. Surrogate model is a technique often used in 
optimisation where a computationally expensive model (in our 
case the standard predictor) is replaced by a simpler model that 
still returns similar results but is much faster. In our case the 
surrogate model was the same as epidemiological SEIR 
described in Section III.B with two differences. First, its 
parameters were fitted to the standard predictor’s outputs 
instead of ground-truth infections. Second, the code was 
rewritten in Cython (static compiler for Python) to be faster. It 
still used the same pipeline of first using NPIs to determine the 
β parameter for each day and then dynamically changing that 
parameter during the SEIR evaluation.  
 



3) Full prescriptor pipeline 
The submitted pipeline works as follows:  
1. For each region we first retrieved the data for the three 

weeks leading to the start date. This data is either stored in 
a historical file or is computed with the standard predictor 
if data is in the future. Based on this data, the country and 
prescription length, we chose the pre-computed plans 
described in Section III.B.1.  

2. In the edge case where infection data always equals 0, we 
prescribe no interventions. Otherwise, we also run the 
optimisation described in Section III.B.2 to create new 
prescription plans from scratch.   

3. Both pre-computed and surrogate optimisation return 
intervention plans of comparable quality, each having their 
strengths and weaknesses. The latter uses a surrogate 
model instead of the “real” one, and is done with severe 
time constraints, while the former optimizes for different 
(although similar) time/region combinations than the target 
ones. 

We discovered, however, that combining both results 
frequently increases the overall quality of the obtained Pareto 
front approximation. Having the twenty solutions – ten from 
each method – we finally select ten best ones for the final 
submission. This step was done using the greedy Hypervolume 
Subset Selection (gHSS) method [9]. This approach finds an 
approximate solution to the hypervolume subset selection 
problem. In our case, the objective is to obtain the subset of ten 
solutions that maximize the hypervolume in the objective space. 
Large hypervolume values result in large dominated areas, 
therefore, solutions selected by gHSS are expected to dominate 
a large number of competitors’ solutions. 

IV. RESULTS 

A. Predictor 
1) Predicting β 

Feature selection was run, however none of the features turned 
out to be selected more often than others. On the selected 
features we trained three models (linear regression, decision 
tree regressor and random forest regressor) with the target being 
β. Linear regression performed the best by far, but none of the 
models built on the selected features performed better than the 
model trained only on the NPIs. Thus, for the final model we 
selected linear regression and trained it only on the NPI data 
with the delay of (t – 14) days, since this delay turned out to 
have the strongest negative correlation with the normalized βs. 
 

2) Competition Performance 
 

The competition organizers calculated general mean average 
errors (MAE) and MAE by region to evaluate the predictors of 
every competitor. The full list of results can be found on [10], 
although the team names are anonymised. Our submission 
floated between fourth and first place, depending on the day of 
evaluation, and landed in second place on the last day of the 
evaluation, which meant we qualified for the second round. A 
sample prediction can be seen in FIGURE 2. The only consistent 
prediction error our method was doing (also visible on the same 

figure), was not taking holidays into account as the testing rate 
dropped significantly during such periods.  

 
 

FIGURE 2: (Orange) The number of infections reported in 
Germany. The numbers were smoothed by using a 7-day 

moving average. (Green) The predicted number of infections 
in the same country/period. 

 
 

FIGURE 3: (Top) A prescribed plan for each week, where we 
list the maximum NPI cost for each week. (Bottom) A 

prescribed plan where each column represents one week, and 
each row is the intensity of a different NPI. 

 
 

B. Prescriptor 
Our system had to prescribe 10 intervention plans for each 
country/region for different time intervals and different socio-
economic costs. The full list of results can be found at [11]. 
Sample prescriptions in the objective space are shown in 
FIGURE 3. The main criteria for the competition was the so-
called domination count: a solution scored a point for each other 
solution it dominated. The points achieved by the top 10 teams 
are listed in TABLE 1. Numerically, we were the best performing 
team in the competition (while the numerical results were 
anonymized, the structure of our prescription was easily 
recognizable among the results) and when this was combined 
with the “qualitative score” of the judges, we landed in second 
place.  
 



 

 
FIGURE 4: Prescribed plans from different teams for Germany. 
Each dot represents a different trade-off between the predicted 
number of cases and the NPI cost aggregated socio-economic 

cost. Some plans have low costs and a high number of 
infections, others vice versa. Our submission is represented by 

blue dots, and is visibly one of the two best ones. 
 
 

TABLE 1: The domination count of the 10 best performing 
teams. Our submission is bolded. 

Rank Domination count 

1 515247 

2 490819 

3 458146 

4 435691 

5 396968 

6 313141 

6 313141 

8 288694 

9 148766 

10 134391 

 

V. CONCLUSION 
The XPRIZE: Pandemic Response Challenge focused on the 
development of data-driven AI systems to predict COVID-19 
infection rates and prescriptions of intervention plans that 
regional governments, communities, and organizations can 
implement to minimize harm when reopening their economies. 
 
While the problem of predicting new infections has been 
addressed many times, the real innovation of the competition 
was to find a way to prescribe NPI plans in such a way that both 
the number of infections and the stringency of the plans are the 
lowest possible. Our key insight when designing the predictor 
was to use machine learning to enhance the classical SEIR 
epidemiological model. This allowed us to dynamically adapt 
to the changes in NPIs as they were happening. On the other 
hand, the key insight for the prescriptor was to use MOEA 
methodology which is not common in this domain and then to 

find ways for making it less computationally expensive. The 
latter was done with a combination of surrogate model usage, 
computing sample prescriptions in advance, using weekly 
granularity for the optimisation and clever solution 
representation. Representing solutions using the overall 
stringency (rather than individual interventions) lead to far 
more effective optimisation (due to search-space reduction) and 
consequently better intervention plans in a reasonable time. 
 
Another important issue to explore is how to present such 
methods and their outputs to decision-makers. We developed a 
prototype web application that could be used for such a purpose, 
but collaboration with actual decision-makers is necessary to 
test and improve it. 
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