
MOGA-II PERFORMANCE ON NOISY
OPTIMIZATION PROBLEMS

Silvia Poles
ES.TEC.O S.r.l.
Trieste, Italy
poles@esteco.com

Enrico Rigoni
ES.TEC.O S.r.l.
Trieste, Italy
rigoni@esteco.com

Tea Robič
Department of Intelligent Systems
Jožef Stefan Institute, Ljubljana, Slovenia
tea.robic@ijs.si

Abstract Since the mid-fifties evolutionary algorithms (EAs) have been used in different
optimization problems. In the last years their use was extended to the demand-
ing field of multi-objective optimization. For this expansion, EAs themselves
had to evolve to more complex forms. The question is whether an algorithm
that is adapted to work well with multiple-objectives is still capable to handle
single-objective optimization problems. In this paper we present a new EA for
multi-objective optimization called MOGA-II. We test it on noisy single-objective
problems and compare its performance with two algorithms for single-objective
optimization. The results show that MOGA-II is a robust algorithm that can
efficiently solve a palette of different optimization problems.

Keywords: MOGA-II, Genetic algorithms, Optimization, Noisy functions

1. Introduction
Evolutionary Algorithms (EAs) are widely used in several optimization prob-

lems that are too complex to be solved by traditional methods such as linear
programming or gradient based algorithms. Their main advantage over tradi-

51



52 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

tional methods is robustness, which enables efficient optimization of different
functions, including noisy ones. Being population-based, EAs can be easily
parallelized and can construct multiple optimal solutions in a single run. The
latter property is especially welcome in multimodal and multi-objective opti-
mization.

Multi-objective Optimization Problems (MOPs) are more complex than Sin-
gle-objective Optimization Problems (SOPs) because they involve optimization
of several (usually conflicting) objectives. This yields not a single optimal
solution but a set of equally important optima, called the Pareto front. In
multi-objective optimization it is important to guide the search process toward
the Pareto front and at the same time maintain adequate population variety to
capture as many diverse optimal solutions as possible.

In recent years, EAs have been adjusted in numerous approaches to handle
MOPs. Among many algorithms, the NSGA-II of Deb et al. [1] and SPEA2 of
Zitzler et al. [10] are the most popular. One of the new EAs for multi-objective
optimization is MOGA-II described by Poles in [6], which uses a directional
crossover operator for fast convergence and a smart multisearch elitism for
uniform spread of solutions. MOGA-II has proved to be very efficient in solving
MOPs [7] and in this paper it is tested for robustness. We are raising the question:
“Can an EA that was constructed to solve MOPs handle also (noisy) SOPs?”
For this purpose we test MOGA-II on five benchmark problems and compare its
results with the ones obtained by differential evolution (DE) [8] and a standard
EA for single-objective optimization.

The rest of the paper is organized as follows: a detailed description of
MOGA-II is presented in Sect. 2 followed by the specification of the exper-
iments in Sect. 3. Section 4 is devoted to the presentation of the experimental
results that are further discussed in Sect. 5. The paper ends with a conclusion
in Sect. 6.

2. MOGA-II
MOGA-II is an improved version of MOGA (Multi-Objective Genetic Al-

gorithm) by Poloni [5] and is not to be confused with MOGA by Fonseca and
Fleming [2] with which it shares only the same acronym. MOGA-II uses a
smart multisearch elitism for robustness and directional crossover for fast con-
vergence. Its efficiency is ruled by its operators (classical crossover, directional
crossover, mutation and selection) and by the use of elitism. In this paper only
the features of MOGA-II that relate to its use in single-objective optimization
are explained.



MOGA-II Performance on Noisy Optimization Problems 53

2.1 Encoding
Encoding in MOGA-II is done as in classical genetic algorithms [3]. Each

variable is represented as a binary string where the length of the string depends
on the base (the number of allowed values for the variable). For example, if only
integer values in the interval [0, 10] are to be allowed (11 possible values), the
base is set to 11. Thus the length of the string is equal to 4 and the variable can
take values from [0000] to [1011]. In order to simulate a continuous variable,
the base must be set to an appropriate high number.

2.2 Elitism
Elitism is very important in multi-objective optimization because it helps

preserving the individuals that are closest to the Pareto front and the ones that
have the best dispersion. When optimizing a single objective, the elitism em-
bedded in MOGA-II reduces to copying the solution with the best fitness into
the next generation.

2.3 Reproduction
MOGA-II uses four different operators for reproduction (one-point crossover,

directional crossover, mutation and selection). At each step of the reproduction
process, one of the four operators is chosen (with regard to the predefined op-
erator probabilities) and applied to the current individual. Algorithm 1 shows
the reproduction of MOGA in pseudo code.

Algorithm 1: Pseudo code of the reproduction used in MOGA-II

with (individual Indi ∈ generation G) do
choose reproduction operator
if (operator is one-point crossover) then

j ← TournamentSelection, where j 6= i
NewIndi ← OnePointCrossover(Indi, Indj)

else if (operator is directional crossover) then
j ← RandomWalk(i)
k ← RandomWalk(i), where k 6= j 6= i
NewIndi ← DirectionalCrossover(Indi, Indj , Indk)

else if (operator is mutation) then
NewIndi ←Mutation(Indi)

else if (operator is selection) then
NewIndi ← Indi

end if
end with



54 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.3.1 One-Point Crossover. One-point crossover is the most classical
operator for reproduction. Two parents are chosen and some portion of the
genetic material (the design variables) is exchanged between the parent variables
vectors (see Fig. 1). The point of the crossing site is randomly chosen and the
binary strings are cut at that point. The two head pieces are then swapped and
rejoined with the two tail pieces. From the resulting individuals, usually called
children, one is randomly selected to be the new individual.

100101 1101

010011 0010

100101 0010

010011 1101

Figure 1. One-point crossover.

In MOGA-II, one-point crossover starts by taking the current individual
Indi as the first parent. The second parent Indj is chosen by means of a multi-
objective tournament selection on a randomly selected population subset: this
operator returns the first non-dominated solution in the subset.

2.3.2 Directional Crossover. Directional crossover is slightly differ-
ent and assumes that a direction of improvement can be detected comparing
the fitness values of two reference individuals. In [9] a novel operator called
evolutionary direction crossover was introduced and it was shown that even in
the case of a complex multimodal function this operator outperforms classical
crossover.

The direction of improvement is evaluated by comparing the fitness of the
individual Indi from generation t with the fitness of its parents belonging to
generation t − 1. The new individual is then created by moving in a randomly
weighted direction that lies within the ones individuated by the given individual
and his parents (see Fig. 2). A similar concept can be however applied on

�

�

�

�

Indi

Indj

Indk

NewIndi

Figure 2. Directional crossover between individuals Indi, Indj and Indk.



MOGA-II Performance on Noisy Optimization Problems 55

the basis of directions not necessarily linked to the evolution but detected by
selecting two other individuals Indj and Indk in the same generation (like
shown in Algorithm 1).

Algorithm 2: Random walk from the i-th individual

Input: index i of the starting individual
S ← ∅
m← b√popSizec;
for all (N steps) do

k ← b4 · rand() + 1c
if (k == 1) then

i← i + 1
end if
if (k == 2) then

i← i− 1
end if
if (k == 3) then

i← i−m
end if
if (k == 4) then

i← i + m
end if
if (i < 1) then

i← i + popSize
end if
if (i > popSize) then

i← i− popSize
end if
S ← S ∪ Indi

end for
Output: j such that f(Indj) = minInd∈S f(Ind)

The selection of individuals Indj and Indk can be done using any available
selection schema. In MOGA-II local tournament with random steps in a toroidal
grid is used. First of all, the individual subject to reproduction is chosen as the
starting point. Other individuals met in a random walk of assigned number of
steps from that starting point are then marked as possible candidates for the first
“parent” Indj . The list of all possible candidates for the second “parent” Indk

is selected in the same way in a successive (and generally different) random
walk from the same starting point. When the set of candidates is generated, the
candidate with the best fitness is chosen.

The number of steps N in the random walk remains fixed during the entire
optimization run and is proportional to the population size. Algorithm 2 shows
the random walk with individual Indi chosen as a starting point. The function
rand() generates values in the interval [0, 1) with a uniform distribution.



56 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Directional crossover has demonstrated to help the algorithm convergence
for a wide range of numerical problems.

2.3.3 Mutation. Mutation is an operator that ensures diversity from one
generation to the next. Using plain words we can say that mutation guarantees
the algorithm robustness. In MOGA-II it is possible to define the value of the
so-called DNA String Mutation Ratio. This value gives the percentage of the
binary string that is perturbed by the mutation operator.

10 01 0 1 110 1 10 10 0 0 110 0

Figure 3. Mutation example with DNA string mutation ratio set to 40%.

3. Experiments
In our experiments we tested the performance of MOGA-II on five numerical

single-optimization problems with and without noise. The used numerical
benchmark problems are described in Table 1. In all problems the function is
to be minimized.

To preserve consistency with the results in [4] we set up the following ex-
periments. Each test function fi was optimized with and without noise. The
noise was introduced as

f∗
i (x) = fi(x) + N(0, 1)

where the N(0, 1) is the normal (or Gaussian) distribution with mean 0 and
variance 1. The experiments on the noisy functions were run with 5 different
number of resamples: s = 1, 5, 20, 50 and 100. This means that a solution
was evaluated s times and the true value of fi was estimated by the mean of
the samples. In all runs the number of function evaluations was kept constant
to provide a fair performance comparison and was calculated as

numEval = popSize × numIt × s − numUnchanged

where popSize is the population size, numIt is the number of iterations, s
is the number of resamples and numUnchanged is the number of unchanged
individuals during the run. The latter refers to candidate solutions that were
evaluated previously in the same run, which we did not re-evaluate if they
remained unchanged, such as for example members of the elite.

Each experiment was repeated 3 times. We used numEval = 100, 000
for low dimensional functions f1 and f2 and 400, 000 for the 50 dimensional



MOGA-II Performance on Noisy Optimization Problems 57

Table 1. Benchmark problems.

name Schaffer F6
dimensions 2

definition f1(x) = 0.5 +
sin2(

√

x2
1
+x2

2
)−0.5

(1+0.001(x2
1
+x2

2
))2

constraints xi ∈ [−100, 100]
optimum x

∗ = (0, 0), f1(x∗) = 0

name Sphere
dimensions 5
definition f2(x) =

∑5
i=1 x2

i

constraints xi ∈ [−100, 100]
optimum x

∗ = (0, 0, 0, 0, 0), f2(x∗) = 0

name Griewank
dimensions 50

definition f3(x) = 1 + 1
4000

·
∑50

i=1(xi − 100)2 −
∏50

i=1 cos
(

xi−100√
i

)

constraints xi ∈ [−600, 600]
optimum x

∗ = (100, . . . , 100), f3(x∗) = 0

name Rastrigin F1
dimensions 50
definition f4(x) = 500 +

∑50
i=1(x2

i − 10 · cos (2πxi))
constraints xi ∈ [−5.12, 5.12]
optimum x

∗ = (0, . . . , 0), f4(x∗) = 0

name Rosenbrock
dimensions 50
definition f5(x) =

∑49
i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2
)

constraints xi ∈ [−50, 50]
optimum x

∗ = (1, . . . , 1), f5(x∗) = 0

Table 2. The values of population size and number of iterations for each experiment. The
number of unchanged individuals is different in every run, therefore the number of iterations is
calculated as numEval/(popSize× s). The non-noisy versions of the functions had the same
values for popSize and numIt as the respective noisy ones with s = 1.

functions s 1 5 20 50 100

f∗
1 , f∗

2 popSize 50 50 50 50 25
numIt 2000 400 100 40 40

f∗
3 , f∗

4 , f∗
5 popSize 100 100 100 100 100

numIt 4000 800 200 80 40

functions f3, f4 and f5. The values of popSize and numIt for each experiment
are gathered in Table 2.

Table 3 shows the parameter setting for MOGA-II. The parameters were not
tuned to any benchmark problem – we used the default values of the algorithm,
which demonstrate to perform well in most real-world problems. MOGA-II



58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

encodes its variables as binary strings and therefore needs a discretized space.
In this experiments, the base for the encoding was set in such way, that the
discretization was 10−6. In the used benchmark problems, the bases have
been set respectively to 200, 000, 001 for f1 and f2, 1, 200, 000, 001 for f3,
10, 240, 001 for f4 and 100, 000, 001 for f5. As said in the previous section,
such high bases permit to simulate suitably continuous variables.

Table 3. Parameter settings for MOGA-II.

probability of directional crossover 50%
probability of classical crossover 35%
probability of selection 5%
probability of mutation 10%

DNA string mutation ratio 5%

4. Results
The results reported in this section refer to the “true” (non-noisy) evaluation

of solutions. We compare the results of MOGA-II with the ones obtained by
differential evolution and a standard EA that were published in [4] (see Table 4).
The comparison is not completely fair. As said in the previous section, the
experiments with MOGA-II were repeated 3 times while the results of DE
and EA from Table 4 are the outcome of 30 runs. Moreover, with the high
dimensional functions f3, f4 and f5 MOGA-II was given 400,000 evaluations
while DE and EA continued until 500,000 evaluations were reached. The
reason for this inconsistence is the lack of time we had at our disposal. But it is
important to emphasize that this comparison works in favour of DE and EA and
not MOGA-II. Time limitations were due to the fact that MOGA-II is embedded
into a commercial optimization environment called modeFRONTIER [11]; this
Java software contains an advanced post-processing analysis tool, well suited
for engineering issues, where the bottleneck is given by the external solvers.
But in our case the main problem was handling such a big designs database, and
this cannot be quickly done in a non-compiled programming language such as
Java.

In Fig. 4 the charts represent the performance of MOGA-II on noisy bench-
mark problems. Note that there was not enough room to include also the graphs
for non-noisy evaluations. Anyhow, with non-noisy functions the optimum was
always reached very quickly.



MOGA-II Performance on Noisy Optimization Problems 59

Table 4. Mean and standard deviation of the final results for the benchmark problems (see
Table 1). The results of the algorithms DE and EA are taken from [4].

MOGA-II DE EA
Function mean st. dev. mean st. dev. mean st. dev.

f1 0 0 0 0 3 · 10−17 0
f∗
1 (s = 1) 0.04285 0.03488 0.48998 0.00582 0.25829 0.03045

f∗
1 (s = 5) 0.03533 0.04419 0.40360 0.03030 0.12859 0.01678

f∗
1 (s = 20) 0.01054 0.00120 0.16597 0.02753 0.06730 0.01066

f∗
1 (s = 50) 0.01012 0.00049 0.12729 0.01829 0.04769 0.00757

f∗
1 (s = 100) 0.01927 0.01655 0.09795 0.01203 0.06277 0.00743

f2 0 0 10−152 0 7 · 10−20 0
f∗
2 (s = 1) 0.01067 0.00581 0.25249 0.02603 0.04078 0.00543

f∗
2 (s = 5) 0.01077 0.00188 0.13315 0.01266 0.02690 0.00363

f∗
2 (s = 20) 0.00757 0.00903 0.07364 0.00811 0.02205 0.00290

f∗
2 (s = 50) 0.00398 0.00238 0.07004 0.00686 0.01765 0.00233

f∗
2 (s = 100) 0.04436 0.04290 0.08165 0.00800 0.03929 0.00396

f3 2 · 10−12 2 · 10−12 0 0 0.00624 0.00138
f∗
3 (s = 1) 3.29905 0.40864 3.31514 0.07388 1.14598 0.00307

f∗
3 (s = 5) 2.40897 0.25458 2.42183 0.03616 1.10223 0.00342

f∗
3 (s = 20) 1.78540 0.35279 2.67093 0.03895 1.44349 0.01381

f∗
3 (s = 50) 3.78713 0.75639 46.8197 0.96449 3.69626 0.13127

f∗
3 (s = 100) 14.5960 1.25293 233.802 6.25840 18.0858 0.99646

f4 0.49748 0.70354 0 0 32.6679 1.94017
f∗
4 (s = 1) 28.8315 2.33133 2.35249 0.06062 30.7511 1.32780

f∗
4 (s = 5) 21.6573 2.68711 14.0355 0.47935 31.4725 2.02356

f∗
4 (s = 20) 45.2687 4.17703 167.628 2.12569 39.1777 2.11529

f∗
4 (s = 50) 104.415 19.7481 314.762 2.88650 74.8577 2.69437

f∗
4 (s = 100) 177.847 13.7495 438.036 3.67504 147.800 2.93208

f5 40.6641 50.5749 35.3176 0.27444 79.8180 10.4477
f∗
5 (s = 1) 56.5750 39.8582 47.6188 0.15811 118.940 13.2322

f∗
5 (s = 5) 160.737 56.7030 47.0404 0.13932 341.788 49.6738

f∗
5 (s = 20) 1601.84 1081.10 7917.46 352.851 1859.06 261.844

f∗
5 (s = 50) 1.3 · 105 93260.1 1.7 · 107 903677 35477.7 4656.17

f∗
5 (s = 100) 1.2 · 106 4.3 · 105 3.0 · 108 1.0 · 107 257488 19371.2

5. Discussion
The results in the non-noisy cases are obviously better than the noisy exper-

iments: the noise plays always the role of annoyance factor. As concerns the
noisy cases, considering the different values s = 1, 5, 20, 50, and 100 for the
resampling (and consequently the differences in the number of iterations and/or
population size, in order to preserve the total number of evaluated designs), we
can expect two different effects to come into play, for “low” and “high” values
of s, respectively. Towards the low end, say s = 1, the noise gain in importance,
so we could expect the results to deteriorate. But also towards the high end, i.e.
s = 100, the results are expected to be worse, since the request for evaluating



60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0 2 4 6 8 10

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of evaluations

s=1
s=5
s=20
s=50
s=100

PSfrag replacements

f
1

0 2 4 6 8 10

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of evaluations

s=1
s=5
s=20
s=50
s=100

PSfrag replacements

f
2

0 0.5 1 1.5 2 2.5 3 3.5 4

x 105

0

50

100

150

200

250

300

350

400

450

500

Number of evaluations

s=1
s=5
s=20
s=50
s=100

PSfrag replacements

f
3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 105

0

100

200

300

400

500

600

700

800

900

1000

Number of evaluations

s=1
s=5
s=20
s=50
s=100

PSfrag replacements

f
4

0 0.5 1 1.5 2 2.5 3 3.5 4

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 106

Number of evaluations

s=1
s=5
s=20
s=50
s=100

PSfrag replacements

f
5

Figure 4. MOGA-II performance on noisy benchmark problems (see Table 1 for function
definitions).

the same candidate solution many times, in order to reduce the noise effect,
implies that we have to limit consequently the number of iterations, stopping
prematurely the optimization process. This is the case for the low-dimensional
noisy Schaffer F6 (2D) function (f1) and Sphere (5D) function (f2), but also for
the high-dimensional Griewank (50D) function (f3): the best results are found
for s = 20 or s = 50, as a compromise between the low and high ends.

On the contrary, for the Rosenbrock (50D) function (f5), the results get
better monotonically as s decreases, showing no deterioration due to a stronger



MOGA-II Performance on Noisy Optimization Problems 61

noise effect. For Rastrigin F1 (50D) function (f4) the behaviour is similar,
but there is still a residual “low end effect”, which settles the best compromise
result in s = 5. In these two cases, as outlined by Krink et al. [4], the main
problem resides in the difficulty of the function, and not in the noise effect:
the performance of any EA is affected by the intrinsic critical aspects of the
function, well before the noise effect can come into play, in terms of fitness
contribution. This can be also seen considering the results for the non-noisy
cases: the results achieved for f4 and especially for f5 are sensibly far from the
optimal value 0.

The comparison of MOGA-II results with those of DE and the generic EA
presented in [4], shows the good performance of MOGA-II (see Table 4). For
both low-dimensional noisy functions f1 and f2 , MOGA-II performs better
than DE and EA, for all values of s.

As concerns f3, where EA is better than DE, for low s, i.e. s = 1 and s = 5,
MOGA-II is comparable to DE, while for high s, i.e. s = 20, 50, and 100 it is
comparable to the good results of EA. With the f4 function, for low s (i.e. s = 1,
5), where DE performs better than EA, MOGA-II results are better than EA but
worse than DE; for high s (i.e. s = 20, 50, and 100), where EA is better than
DE, the MOGA-II results are roughly comparable to those of EA. Finally, as
concerns f5, for low s DE performs better than EA, and conversely for high s EA
is better than DE, as in the previous case. The results of MOGA-II are roughly
situated in an intermediate position between the results of DE and EA, but the
large standard deviations prevent us from a detailed comparative analysis. Such
large standard deviations could be indicative of a difficult problem, but can also
be due to the low number of repetitions. Unfortunately, as said in the previous
section, we could repeat the experiments only 3 times, for intrinsic limitations.

It should be noted that in general MOGA-II converges to the optimal solution
faster than DE, in terms of number of function evaluations: this is an important
point in case of realistic applications, where the evaluation time for a single
design can be very long.

6. Conclusion
In this paper, we have presented MOGA-II, a new evolutionary algorithm

for multi-objective optimization, and tested it on single-objective optimization
problems (with and without noise). Although compared to two very success-
ful algorithms (differential evolution and a standard evolutionary algorithm),
MOGA-II sometimes performed better and never worse than both algorithms,
which were constructed for single-objective optimization.

The current results motivate further work in testing MOGA-II, especially to
see its performance on real-world problems. We can conclude that MOGA-II



62 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

is a competent algorithm that is robust and efficient enough to handle different
optimization problems, including noisy ones.

References
[1] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the 6-th
International Conference Parallel Problem Solving from Nature (PPSN-VI), 2000, pp.
849–858.

[2] C.M. Fonseca and P.J. Fleming. Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In Proceedings of the Fifth International
Conference on Genetic Algorithms, San Mateo, USA, 1993, pp. 416–423.

[3] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, Mass., USA, 1989.

[4] T. Krink, B. Filipič, G.B. Fogel, and R. Thomsen. Noisy optimization problems - A
particular challenge for differential evolution? In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation, Portland, USA, 2004, pp. 332–339.

[5] C. Poloni and V. Pediroda. GA coupled with computationally expensive simulations: tools
to improve efficiency. In Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science, John Wiley and Sons, England, 1997, pp. 267–288.

[6] S. Poles. MOGA-II An Improved Multi-Objective Genetic Algorithm. Technical report
2003-006, Esteco, Trieste, 2003.

[7] S. Poles. Bench-marking MOGA-II. Technical report 2004-001, Esteco, Trieste, 2004.

[8] K.V. Price and R. Storn. Differential evolution – a simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, 22(4):18–24, 1997.

[9] K. Yamamoto and O. Inoue. New evolutionary direction operator for genetic algorithms.
AIAA Journal, 33:1990–1993, 1995.

[10] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolu-
tionary Algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, May 2001.

[11] Web page of the modeFRONTIER optimization software (http://www.esteco.com/
Products/modeFrontier/index.html).




