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Abstract

This paper proposes a novel surrogate-model-based multiobjective evolutionary algo-

rithm called Differential Evolution for Multiobjective Optimization Based on Gaussian

Process Models (GP-DEMO). The algorithm is based on the newly defined relations

for comparing solutions under uncertainty. These relations minimize the possibility of

wrongly performed comparisons of solutions due to inaccurate surrogate model appro-

ximations. The GP-DEMO algorithm was tested on several benchmark problems and

two computationally expensive real-world problems. To be able to assess the results

we compared them with another surrogate-model-based algorithm called Generational

Evolution Control (GEC) and with the Differential Evolution for Multiobjective Opti-

mization (DEMO). The quality of the results obtained with GP-DEMO was similar to

the results obtained with DEMO, but with significantly fewerexactly evaluated solu-

tions during the optimization process. The quality of the results obtained with GEC

was lower compared to the quality gained with GP-DEMO and DEMO, mainly due to

wrongly performed comparisons of the inaccurately approximated solutions.
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1. Introduction

Optimization problems are present in our everyday life and come in a variety of

forms, e.g. the task to optimize certain properties of a system by correctly choosing

the system parameters. Many of these optimization problemsrequire the simultaneous

optimization of multiple, often conflicting, criteria (or objectives). These problems

are called multiobjective optimization problems. The solution to such problems is not

a single point, but a family of points, known as the Pareto-optimal set. This set of

solutions gives the decision maker an insight into the characteristics of the problem

before a single solution is chosen.

One of the most effective ways to solve problems with more objectives is to use

multiobjective evolutionary algorithms (MOEAs). MOEAs are population-based algo-

rithms that draw inspiration from optimization processes that occur in nature. During

the optimization process, in order to find a Pareto-optimal set, a lot of different soluti-

ons have to be assessed (evaluated). If these solution evaluations are computationally

expensive, the whole optimization process can take a lot of time.

In order to obtain the results of such an optimization problem more quickly, we can

use surrogate models in the optimization process to approximate the objective functi-

ons of the problem. To evaluate a solution, instead of using atime-consuming exact

evaluation, a solution can be approximated with the surrogate model. Since one solu-

tion approximation is (much) faster, the whole optimization process can be accelerated.

However, note that the time needed to create and update the surrogate models during

the optimization process has to be considered and included in the whole duration of the

optimization process. So, in the case where the exact solution evaluations are quick, it

can happen that the surrogate-model-based optimization takes longer than the optimi-

zation without surrogates.

In surrogate-model-based multiobjective optimization, approximated values are often

inappropriately used in the solution comparison. As a consequence, exactly evalua-

ted good solutions can be discarded from the population because they appear to be

dominated by the inaccurate and over-optimistic approximations. This can slow the

optimization process or even prevent the algorithm from finding the best solutions.
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Some surrogate models provide a distribution, from which the approximated value

and also the confidence interval of the approximation can be calculated. Using this

confidence interval, we define new dominance relations that take into account this un-

certainty and propose a new concept for comparing solutionsunder uncertainty that

requires exact evaluations only in cases where more certainty is needed. This minimi-

zes the mistakes made in comparisons of inaccurately approximated solutions.

Based on this concept we propose a new surrogate-model-based multiobjective evo-

lutionary algorithm, called Differential Evolution for Multiobjective Optimization Ba-

sed on Gaussian Process Modeling (GP-DEMO). This algorithmis an extension of the

Differential Evolution for Multiobjective Optimization (DEMO) algorithm [1], which

uses differential evolution to effectively solve numerical multiobjective optimization

problems. In addition, DEMO also emphasizes the variation operators and compared

to for instance hypervolume-based search is comparably cheap in terms of computa-

tional effort. In the GP-DEMO, Gaussian Process (GP) modeling is employed to find

approximate solution values together with their confidenceintervals. Then, instead of

comparing the solutions using the Pareto dominance relation, GP-DEMO uses the new

uncertainty-based dominance relations, requiring exact evaluations of solutions as nee-

ded. The efficiency of GP-DEMO is assessed on several benchmark and two real-world

optimization problems.

The structure of this paper is as follows. In Section 2, we overview the work done

in the field of surrogate-model-based optimization, especially in multiobjective optimi-

zation. In Section 3, we describe the Gaussian Process modeling that is used to build

the surrogate models in GP-DEMO. Then, in Section 4, we describe the new relations

and methods for comparing solutions (presented with and without uncertainty). The

GP-DEMO algorithm is presented in Section 5. In Section 6, wetest and compare

GP-DEMO with two other algorithms on benchmark and real-world multiobjective op-

timization problems. Finally, Section 7 concludes the paper with a summary of the

work done and our ideas for future work.
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2. Related Work

In the literature the term surrogate model (sometimes also meta-model) based op-

timization is used where, during the optimization processes, some solutions are not

evaluated with the original objective function, but are approximated using a model of

this function. Different modeling methods are used to buildthe surrogate models. For

single and multiobjective optimization similar methods are used. These methods typi-

cally return only one approximated value, which is why in multiobjective problems

several models have to be used, so that every model approximates one objective. Some

of the most commonly used methods are the Response Surface Method [2], Radial

Basis Function [3], Neural Network [4], Kriging [5] and Gaussian Process Modeling

[6, 7, 8].

In single-objective optimization, the usage of surrogate models is well established

and has proven to be successful. In the literature many different algorithms and various

modeling techniques are used to solve benchmark and real-world problems [9, 10].

The results typically show that the surrogate-model-basedoptimization in comparison

with optimization without surrogates provides comparableresults in fewer objective

function evaluations [11, 12]. The use of differential evolution in combination with

surrogate models is mentioned in [9]. The authors presentedan algorithm based on

differential evolution that generates multiple offspringfor each parent and chooses the

promising one based on the confidence and the approximation of the current surrogate

model.

In the field of surrogate-model-based multiobjective optimization, where the result

is not just one solution but a non-dominated front of solutions, the problem of finding

these solutions is even more challenging. There are many approaches that differ in

terms of which solutions are approximated and how they use the approximations. Su-

rrogate models can aim at either a global approximation of the objective function, or

a local one, focusing on the neighborhood of the best currentindividuals. In [12], the

authors used a combination of local and global surrogate models for solving optimiza-

tion problem of Aerodynamic Shape Design.

Within surrogate-model-based optimization algorithms a mechanism is needed to
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find a balance between the exact and approximate evaluations. In evolutionary algori-

thms this mechanism is called evolution control [13] and canbe either fixed or adaptive.

In fixed evolution control, the surrogate model is trained from previously exac-

tly evaluated solutions and then used directly instead of expensive objective function

evaluations. In this approach the number of exact function evaluations that will be

performed during the optimization is known in advance. Fixed evolution control can

be further divided into generation-based control, where insome generations all soluti-

ons are approximated and in the others they are exactly evaluated [14], and individual

based control, where in every generation some (usually the best) solutions are exactly

evaluated and others approximated [15].

In adaptive evolution control, the number of exactly evaluated solutions is not

known in advance, but depends on the accuracy of the model forthe given problem.

Adaptive evolution control can be used in one of two ways: as apart of a memetic

search or to pre-select the promising individuals which arethen exactly evaluated [16].

In a memetic algorithm, an additional algorithm (e.g., a gradient-based or an evolu-

tionary algorithm) is used to find the optimal solutions using the surrogate model. Once

this optimum is found, the best solutions are exactly evaluated and used for updating

the model. In [17], aggregated surrogate models are used in amemetic algorithm. The

model is based on the distance to the currently known, non-dominated set and is used

to find new, non-dominated individuals using local search. In memetic algorithms,

especially if the surrogate model is not very accurate, a local optimum is often found

instead of the global optimum.

In the case of pre-selecting the promising individuals, thesurrogate model is used

to find the promising or drop the low-quality individuals even before they are exactly

evaluated, thus reducing the number of exact evaluations. For example, OEGADO

[18] creates a surrogate model for each of the objectives. The best solutions in every

objective get also approximated on other objectives, whichhelps with finding trade-

off individuals. The best individuals are then exactly evaluated and used to update the

models. ParEGO [19] uses the weighted sum of the objective functions to perform a

local search. The weights are generated randomly for each iteration. When a different

model is used for each of the functions, the conversion from the multiobjective problem
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to the single-objective one has to be performed (or a multiobjective optimizer has to be

used on the models). Moreover, if there are more models, their errors can add up, as

well as the time needed to train the models.

Surrogate models are also used to rank and filter out offspring according to Pareto-

related indicators like the hypervolume [20], or a weightedsum of the objectives [21].

The problem with the methods that use hypervolume as a way of finding promising

solutions is the calculation time needed to calculate the hypervolume, especially on

many objectives. Another possibility is described in [22],where the authors present an

algorithm that calculates only non-dominated solutions orsolutions that can, because

of variance, become non-dominated.

Some surrogate models, in addition to the approximation value, also return the

certainty of the prediction. The use of this confidence information can help to increase

the prediction accuracy of the surrogate model. In [10], theauthors use confidence

information to guide the search towards less explored regions in the search space. The

confidence of the prediction with the approximated value canbe used to calculate the

criterion of expected improvement. Approaches to applyingthis criterion are analysed

in [23], while an algorithm using this criterion to decide which solutions should be

exactly evaluated is presented in [24].

During the comparison of solutions in the surrogate-model-based optimization, it

can happen that an incorrectly approximated solution is presented as the better of two

compared solutions. As multiobjective optimization algorithms usually discard domi-

nated solutions, a good, exactly evaluated solution might be lost in such a case. Simi-

larly, if a good solution is incorrectly approximated as worse, this solution is discarded.

To prevent these unwanted effects, we propose a new concept for comparing solu-

tions under uncertainty, where in addition to the approximated value of a solution, its

variance is considered. In [25], the authors tackle a noisy optimization problem with

an algorithm that compares the solutions with uncertainty and, if necessary, performs

additional evaluations of the same solution to minimize theuncertainty and, if possible,

decide which solution is better. A theoretical presentation of the solution comparison

under uncertainty was presented in [26] for optimization problems where the uncerta-

inty of the solutions cannot be reduced by the sampling methods. The authors suggest
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a strong Pareto dominance relation in cases when the dominance status can be determi-

ned, and weak Pareto dominance relation when, because of uncertainty, the domination

status could not be determined. In this case the expected values for every solution are

assumed and these values are then compared. In [27], a partial order approach is sugge-

sted to enable the comparison of solutions presented with confidence intervals. This

approach does not differentiate between the cases where theupper border of the first in-

terval dominates the lover border of the second interval andthe cases where some part

of intervals overlap. Very similar approach to handle solutions presented with intervals,

called imprecise Pareto relations, was presented in [28]. In [29], the authors define bo-

unding boxes to represent the solutions with confidence intervals. But the comparison

of solutions is again simplified to the rejection of individuals with a small probability

to be competitive, or to the exact evaluation of solutions, with a high probability to be

better. In our paper, we adjust the comparison of solutions for surrogate-model-based

multiobjective optimization and apply this comparison to the GP-DEMO algorithm to

ensure that the best solutions are preserved in the optimization process.

3. Gaussian Process Models

The Gaussian process (GP) models are probabilistic, non-parametric, models based

on the principles of Bayesian probability, which can be usedfor both regression and

classification problems. The name GP models refers to the assumption that a prior on

the function to be modeled is a stochastic process with a normal distribution, i.e., a

Gaussian process (GP).

The GP regression is more or less identical to the Kriging method [30], which

is widely used in the field of geostatistics. As a geostatistical method, it is mostly

used for two- and three-dimensional input spaces and tends to ignore any probabilistic

interpretations [31, 5]. Since the introduction of GPs in supervised learning [32], GP

models have been used for modeling in various fields, e.g., biological systems [33, 34],

environmental systems [35], chemical engineering [36] andmany others.

The GP models differ from most of the other black-box identification approaches

in that they do not try to approximate the modeled system by fitting the parameters of
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the selected basis functions, but rather by searching for relationships among the mea-

sured data. The output of GP models is a normal distribution,expressed in terms of the

mean and the variance. The mean value represents the most likely output and the va-

riance can be interpreted as a measure of its confidence. The obtained variance, which

depends on the amount and the quality of the available training data, provides impor-

tant information when it comes to distinguishing GP models from other computational

intelligence methods.

As GP models are, due to their probabilistic nature, suitable for interpolation, i.e.,

when data is missing, and in addition to the mean value also provide variance, they

were already used in stochastic optimizations with surrogate models [37].

3.1. Gaussian Process Modeling

A GP is a collection of random variables that have a joint multivariate Gaussian

distribution. Assuming a relationship of the formy = f(x) between inputx and

outputy, we havey1, . . . , yN ∼ N (0,K), whereKpq = Cov(yp, yq) = C(xp,xq)

gives the covariance between the output points corresponding to the input pointsxp

andxq. Thus, the meanµ(x) and the covariance functionC(xp,xq) fully specify the

GP.

The value of the covariance functionC(xp,xq) expresses the correlation between

the individual outputsf(xp) andf(xq) with respect to inputsxp andxq. It should be

noted that the covariance functionC(·, ·) can be any function that generates a positive

semi-definite covariance matrix.

A commonly used covariance function is a composition of the square exponential

covariance function with “automatic relevance determination” (ARD) hyperparameters

[8] and the constant covariance function assuming white noise:

C(xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(xdp − xdq)
2

]

+ δpqv0, (1)

wherewd, v1 andv0 are the hyperparameters of the covariance function,D is the input

dimension, andδpq = 1 if p = q and0 otherwise. Other forms and combinations of

covariance functions suitable for various applications can be found in [6]. The hyperpa-

rameters can be written as a vectorΘ = [w1, . . . , wD, v1, v0]
T . The hyperparameters
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wd indicate the importance of individual inputs. Ifwd is zero or near zero, it means the

inputs in dimensiond contain little information and could possibly be neglected.

To accurately reflect the correlations presented in the training data, the hyperpara-

meter values of the covariance function need to be optimized. Due to the probabilistic

nature of the GP models, instead of minimizing the model error, the probability of the

model is maximized.

Consider a set ofN D-dimensional input vectorsX = [x1, x2, . . . ,xN ]T and a

vector of output datay = [y1, y2, . . . , yN ]. Based on the data(X,y), and given a new

input vectorx∗, we wish to find the predictive distribution of the corresponding output

y∗. From the training setX, a covariance matrixK of sizeN × N is determined.

The overall problem of learning unknown parameters from data corresponds to the

predictive distributionp(y∗|y,X,x∗) of the new targety, given the training data(y,X)

and a new inputx∗. In order to calculate this posterior distribution, a priordistribution

over the hyperparametersp(Θ|y,X) can first be defined, followed by the integration

of the model over the hyperparameters

p(y∗|y,X,x∗) =

∫

p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (2)

The computation of such integrals can be difficult due to the intractable nature of

the non-linear functions, therefore, the general practicefor estimating hyperparameter

values is the maximum-likelihood estimation, i.e., minimizing the following negative

log-likelihood function:

L(Θ) = −
1

2
log(| K |)−

1

2
yTK−1y −

N

2
log(2π). (3)

GP models can be easily utilized for regression calculation. Based on the training

setX, a covariance matrixK of sizeN × N is calculated. The aim is to find the

distribution of the corresponding outputy∗ for some new input vectorx∗ = [x1(N +

1), x2(N + 1), . . . , xD(N + 1)].

The predictive distribution of the output for a new test input has a normal probabi-

lity distribution with a mean and variance

µ(y∗) = k(x∗)TK−1y, (4)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (5)

9



wherek(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is theN × 1 vector of covariances be-

tween the test and the training cases, andκ(x∗) = C(x∗,x∗) is the covariance between

the test input itself.

As can be seen from (5) the GP model, in addition to a mean value, also provides

information about the confidence of prediction using the variance. Usually, the confi-

dence of the prediction is depicted with a2σ interval, which corresponds to about95%

of the confidence interval. Considering the confidence intervals of all predictions, we

obtain a confidence band, shown in grey in the example in Fig. 1. It highlights the areas

of the input space where the prediction quality is poor, due to the lack of data or noisy

data, by indicating a wider confidence band around the predicted mean.
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Slika 1: Modeling with GP models: in addition to the mean value (prediction), we obtain a 95% confidence

band for the underlying functionf (shown in grey).
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3.2. Sparse approximation

A noticeable drawback of “full” GP modeling is the computation load that increa-

ses with the third power of the amount of input data due to the calculation of the inverse

of the covariance matrix. This computational complexity restricts the amount of train-

ing data to, at most, a few thousand cases. As multiobjectiveevolutionary algorithms

usually require more than a few thousand evaluations, whichserve as the training data

for GP models, “full” GP modeling does not seem to be viable for our needs.

To overcome the computational-limitation issues and consequently to make the me-

thod viable for large-scale dataset applications, such as stochastic optimization, nume-

rous authors have suggested various sparse approximations. A survey of such methods

can be found in [38, 39]. A common property of all these sparse-approximation me-

thods is that they try to retain the bulk of the information contained in the full training

dataset, but reduce the size of the covariance matrix so as tofacilitate a less com-

putationally demanding implementation of the GP model. Usually, this subset of the

training data is called the active set. The computational complexity of such algorithms

is O(NM2), whereN is the amount of training data andM is the size of the active

set.

We decided to use a state-of-the-art, sparse-approximation method named Sparse

Gaussian Processes using Pseudo-inputs (SPGP) [40], whichis in general determined

as a fully independent training conditional approximation[39, 38]. The idea of this

method is that instead of selecting a subset of the training data, it rather optimizes the

locations ofM pseudo-inputs, as this seems to be easier to solve than the discrete subset

selection problem. The pseudo-input locations are optimized based on the covariances

between the training data points and the pseudo-inputs.

It should be noted that due to fewer data points being incorporated into the model

(covariance matrix) and their arbitrary locations, the posterior of the SPGP model,

especially the variance, can be somewhat different to the posterior of a “full” GP model.

Such a case is illustrated in Fig. 2. It is clear that the mean value is very similar to

the mean value obtained with the “full” GP model (Fig. 1), butthe variance (95%

confidence interval) is distinctly different from the variance obtained by the “full” GP

model (Fig. 1).

11



1 2 3 4 5 6 7 8 9 10 11
−3

−2

−1

0

1

2

3

Input [x]

O
ut

pu
t [

y]

 

 

Confidence band
Training points
Pseudo−inputs
Mean value

Slika 2: Modeling with SPGP models: pseudo-inputs (dots) arearbitrarily located, i.e., not a subset of the

training data points (circles).

4. Relations in Multiobjective Optimization

A multiobjective optimization problem (MOP) consists of finding the minimum of

the function:

f : X → Z

f : (x1, ..., xn) 7→ (f1(x1, ..., xn), ..., fm(x1, ..., xn)),

wheren is the number of variables andm is the number of objectives, and where each

solutionx = (x1, ..., xn) ∈ X is called adecision vector, while the corresponding

elementz = f(x) ∈ Z is anobjective vector. We use this problem formulation to

describe the relations between the the solutions presentedwithout and with uncertainty.

4.1. Relations without uncertainty

First, consider the case where all solutions of a MOP are exactly evaluated. As a

rule, two solutions can be in exactly one of the following four relations.
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Definition 4.1 (Pareto dominance). The objective vectorz dominatesthe objective

vectorw, z ≺ w, iff zj ≤ wj for all j ∈ {1, ...,m} and zk < wk for at least one

k ∈ {1, ...,m}.

Definition 4.2 (weak Pareto dominance). The objective vectorz weakly dominates

the objective vectorw, z � w, iff zj ≤ wj for all j ∈ {1, ...,m}.

Definition 4.3 (strict Pareto dominance). The objective vectorz strictly dominates

the objective vectorw, z ≺≺ w, iff zj < wj for all j ∈ {1, ...,m}.

Whenz = f(x), w = f(y) andz (weakly or strictly) dominatesw, we say that

solutionx (weakly or strictly) dominates solutiony. In other words, solutionx is equal

to or better than solutiony. The weak Pareto dominance is a natural generalization of

the≤ relation, and the strict Pareto dominance is the natural generalization of the<

relation.

Definition 4.4 (incomparability ). The objective vectorsz andw are incomparable,

z||w, iff z � w andw � z.

Again, if z andw are incomparable, solutionsx andy are incomparable.

4.2. Relations under uncertainty

Now consider the case where the objective values of the solutions are approxima-

ted by a surrogate model, e.g., a GP model, that is also able toprovide the confidence

interval for each approximated value. In such a case, the standard relations descri-

bed previously are not suitable, but need to be adapted to accommodate the uncerta-

inty. Every solutionx is represented with a vector of approximated objective values

z = (z1, z2, ..., zm) and a vector of confidence intervals in each objectiveε = (ε1, ε2,

..., εm). In order to be able to compare the solutions represented in this way, the re-

lations between the solutions under uncertainty are definedon thebounding boxesof

their objective values. From the vectors of the approximated values and the confidence

intervals thebounding boxof an objective vectorz is designed as (Fig. 3):

BB(z, ε) = [z1 − ε1, z1 + ε1]× [z2 − ε2, z2 − ε2]× ...× [zm − εm, zm − εm].
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Slika 3: The bounding box of an objective vector

Definition 4.5 (probable Pareto dominance). The bounding boxBB(z, ε) probably

dominates the bounding boxBB(w, δ), BB(z, ε) ≺u BB(w, δ), iff for every zi ∈

BB(z, ε) and everywi ∈ BB(w, δ): zi ≺ wi.

If z = f(x) with confidenceε, w = f(y) with confidenceδ andBB(z, ε) ≺u

BB(w, δ), then solutionx probably dominates solutiony. In other words,x dominates

y with a (high) confidence (depending onε andδ).

Fig. 4 presents the objective valuesz1, .., z5 and their bounding boxes. We can see

thatz1 probably dominates solutionz4 (z1 ≺u z4).

Analogously, other relations can be defined.

Definition 4.6 (probable Pareto non-dominance). The bounding boxBB(z, ε) is pro-

bably non-dominated by the bounding boxBB(w, δ), BB(z, ε) ⊁u BB(w, δ), iff for

everyzi ∈ BB(z, ε) andwi ∈ BB(w, δ): zi ≺ wi or zi||wi.

Several examples of probable Pareto non-dominance can be seen in Fig. 4:z1 ⊁u

z2, z1 ⊁u z3, z1 ⊁u z4, z1 ⊁u z5, z2 ⊁u z4, z3 ⊁u z4.

Whenz = f(x) ∈ BB(z, ε), w = f(y) ∈ BB(w, δ) andBB(z, ε) ⊁u BB(w, δ),

we say that solutionx is probably non-dominated by solutiony. Only when the uncer-
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Slika 4: Approximated solutions presented in the objective space using bounding boxes

tainty is finally removed, e.g. the solutions are exactly evaluated, we learn whetherx

dominatesy or they are incomparable.

Definition 4.7 (probable incomparability ). The bounding boxBB(z, ε) is probably

incomparable with the bounding boxBB(w, δ), BB(z, ε) ||u BB(w, δ), iff for every

zi ∈ BB(z, ε) andwi ∈ BB(w, δ): zi || wi.

Again, two solutions are probably incomparable when the corresponding bounding

boxes are probably incomparable.

Finally, when none of the presented relations under uncertainty apply, two solutions

are in an uncertain relation.

In Fig. 4,z2 is probably incomparable withz3.

Definition 4.8 (uncertain relation). The bounding boxBB(z, ε) is in an uncertain re-

lation with the bounding boxBB(w, δ),BB(z, ε) ∼u BB(w, δ), iff BB(z, ε)∩BB(w, δ) 6=

0.

In Fig. 4,z5 is in an uncertain relation withz2, z3 andz4.

If solutionx probably dominates solutiony, then solutionx is also probably non-

dominated by solutiony:
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x ≺u y ⇒ x ⊁u y.

The probable Pareto dominance as well as the probable incomparability imply pro-

bable Pareto non-dominance.

If all the solutions are exactly evaluated, i.e., all their corresponding confidence

interval widths equal zero, the relations presented in thissubsection directly translate

to the relations described in Subsection 4.1.

Using these relations under uncertainty, a multiobjectiveoptimization algorithm

can often manage to compare two solutions without the need toexactly evaluate them

first.

When in the comparison some uncertainty still remains, the solutions can be exactly

evaluated to eliminate any doubt. This procedure can diminish the number of mistakes

made due to wrong assessments of the solutions.

5. The GP-DEMO Algorithm

The GP-DEMO algorithm for surrogate-model-based optimization is, as the name

suggests, built upon the DEMO algorithm [1]. DEMO is an multiobjective evolutio-

nary algorithm based on Differential Evolution (DE) [41]. Like DE, DEMO is easy

to understand and implement, and very effective on numerical problems. The main

disadvantage of this algorithm is that it is not suited for solving combinatorial pro-

blems because the candidate creation uses vector addition and multiplication. DEMO

is a steady-state evolutionary algorithm that adds candidate solutions to the existing

population. Since they are immediately used for generatingnew solutions, the algori-

thm’s convergence is accelerated. DEMO is also effective inuniformly spreading the

solutions on the non-dominated front. This is done by removing the solutions from the

extended population with the selection method taken from the NSGA-II algorithm [42].

GP-DEMO is very similar to DEMO. The difference is in that GP-DEMO approxima-

tes objective values and their confidence intervals with GP models and uses relations

for comparing the solutions under uncertainty. After beingapproximated, solutions

need to be exactly evaluated when 1) this is required to formalize a comparison (see

subsection 5.1) and 2) they are the best found solutions (seesubsection 5.2).
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The GP-DEMO pseudocode is shown in Fig. 5.

GP-DEMO

1. Exactly evaluate the initial populationP of random

individuals.

2. Build initial GP model.

3. While stopping criterion not met, do:

3.1. For each individualpi (i = 1, . . . , popSize)

fromP repeat:

(a) Create candidatec from parentpi.

(b) Approximate the candidate with the GP model.

(c) Compare under uncertaintyc andpi and keep

either the best one or both (see Subsection 5.1).

3.2. If the population has more thanpopSize

individuals, use selection procedure under

uncertainty.

3.3. Update the GP model from the set of exactly

evaluated solutions.

3.4. Randomly enumerate the individuals inP.

4. Exactly evaluate all approximated solutions on the

front.

Slika 5: Outline of the GP-DEMO algorithm.

As already mentioned in Subsection 3.2, we decided to use theSPGP sparse appro-

ximation for GP modeling due to it having a much lower computational complexity

than “full” GP modeling. Although the SPGP is a sparse approximation method, upda-

ting the model is a relatively slow operation. Therefore, wedecided not to update the

model after every new, exact evaluation becomes available,but only after every new

generation. Such an approach seems natural for evolutionary algorithms and can be

interpreted as batch learning. It should be noted that only exact evaluations are inclu-

ded in updating the model. This means that in the worst case, the number of solutions

evaluated exactly is the same as the population size, and in the best case, no solution is

evaluated exactly and as a result there is no need to update the model. The number of
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exactly evaluated solutions depends on the quality of the model. In general, it is true

that the better the model, the lower the number of exactly evaluated solutions. In some

cases, when the fitness function is very complex and the GP model smooths it, even

though the approximation mean value is accurate enough, thevariance is too big, so

solutions are evaluated exactly.

The update of the SPGP model is implemented as some kind of windowing tech-

nique. After every generation, then last exactly evaluated solutions are used to update

the model, wheren is the window size. As we use the SPGP sparse approximation for

GP modeling,m data points (exactly evaluated solutions) are obtained as the active set.

Both parameters,n andm, are design parameters. It should be noted that the active

set is calculated from scratch during every update, which means that the active set of

the previous model is not used as the initial active set in themodel update. Due to

the nature of the optimization process, we do not want to keepthe solutions from the

whole decision space, but the solutions near the Pareto optimal front. Nevertheless, the

GP model’s hyperparameters are preserved, as their values are not supposed to change

much with each generation/update, and therefore the model optimization converges

much more quickly.

The creation of the candidate solution from the parent the solution is done in the

same way as in DEMO. The comparison of the candidate and parent solutions and the

decision on the outcome are described in Subsection 5.1. Theselection process where

the number of solutions is reduced to the population size is also adapted for surrogate-

model-based optimization with confidence intervals. This procedure is described in

Subsection 5.2.

5.1. Comparing solutions under uncertainty

A comparison of the candidate and parent solutions in the GP-DEMO algorithm

is based on the relations under uncertainty described in Subsection 4.2. There are six

possible situations that can happen when comparing candidate c with the vector of

confidence intervalsε and the parentp with the vector of confidence intervalsδ:

1. If c ||u p, both solutions are added to the population.
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In this case, solutionsc andp are certainly incomparable. Even if both solutions

would be exactly evaluated and thus with confidence intervalwidths equal to

zero, they would still be incomparable and the algorithm would still add both

solutions to the population. Hence, no additional evaluations are needed in this

case.

2. If c ≺u p, solutionc is added to the population and solutionp is discarded.

Here the solutionc is definitely better than the solutionp, therefore no additional

evaluations are necessary as they would not change the dominance relation.

3. If p ≺u c, solutionp is added to the population and solutionc is discarded.

This case is similar to the previous one.

4. If c ⊁u p, the algorithm checksε. If ε 6= 0, the algorithm exactly evaluatesc and

compares the solutions again. Ifε = 0, the algorithm exactly evaluatesp and

compares the solutions again.

In this case, solutionp is better in at least one objective and not worse in the

others. In order to determine if either the solutionc dominates solutionp or they

are incomparable, (at least) one solution needs to be exactly evaluated. Because

c looks more promising, its confidence interval is checked. Ifits width is diffe-

rent from zero, meaning that the solution is approximated, the algorithm exactly

evaluates solutionc and then compares the solutions again. If the confidence

interval width is equal to zero, meaning thatc is exactly evaluated, then, in order

to be able to compare the solutions, the algorithm exactly evaluates solutionp

and compares the solutions again.

5. If p ⊁u c, the algorithm checksδ. If δ 6= 0, the algorithm exactly evaluatesp

and compares the solutions again. Ifδ = 0, the algorithm exactly evaluatesc and

compares the solutions again.

This case is similar to the previous one, except that the solution p is now more

promising.

6. If c ∼u p, the algorithm checksε. If ε 6= 0, the algorithm exactly evaluatesc and

compares the solutions again. Ifε = 0, the algorithm exactly evaluatesp and

compares the solutions again.
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In this case, the only way to see which solution is better is toexactly evaluate

(at least) one solution. Because the candidate (offspring)has the potential to be

better then the parent, the algorithm first checks if it is exactly evaluated. If it is

not, the algorithm exactly evaluates it. If it is, the algorithm exactly evaluates the

parent and than compares the solutions again.

5.2. Selection under uncertainty

The function of the selection procedure in a multiobjectiveevolutionary algorithm

is to limit the size of the population and to uniformly spreadthe solutions on the front.

The selection procedure in GP-DEMO is based on the selectionprocedure proposed in

the NSGA-II algorithm. This selection procedure involves nondominated sorting and

ranking using the crowding distance metric. In nondominated sorting all the nondo-

minated individuals are allocated into the first front and the nondominated sorting is

applied again to the remaining individuals. In this way, a sequence of fronts is ob-

tained, where the individuals from the preceding fronts arepreferred to those from the

subsequent fronts. The new population is filled in turn with the individuals from the

best fronts. If a front cannot fit into the population entirely, the individuals from this

front are further ranked according to the crowding distancemetric. Sorting based on

crowding distance prefers individuals from less crowded regions of the objective space

to ensure a good spread of solutions.

The problem that can occur when performing nondominated sorting with appro-

ximated solutions is that some solutions can wrongly dominate other solutions. For

this reason those solutions are then dominated and can be discarded. As a result the

process of finding the best nondominated solutions is misled. To prevent this from

happening, the original selection procedure is modified so that the solutions that are ei-

ther certainly or possibly (because of confidence intervals) on the first front are exactly

evaluated. With this approach we ensure that the front of nondominated solutions is al-

ways accurate, there are no deficiencies in the optimizationprocess, and the possibility

of getting stuck in the local optima because of inaccurate approximations is reduced.

To calculate the crowding distance metric, the approximated objective values are

used. In this step, the algorithm does not exactly evaluate any more approximated
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solutions, to spare as many exact evaluations as possible.

6. Numerical Evaluation

This section describes the test problems that were used in this study, presents the

settings used for testing, shows the results of the optimization, and compares the re-

sults gained with different algorithms. The section concludes with the discussion and

explanation of the results.

6.1. Test problems

The test problems used in our study are all minimization problems and can be

divided into two groups. The first group consists of known benchmark problems and

the second group consists of two real-world problems. The benchmark problems were

divided into easier and more complex problems to test all theaspects of the algorithms.

The first of the two real-world problems is the optimization of a continuous steel casting

process and the second one is the problem of finding the best correlation between a

simulated and a measured electrocardiogram (ECG).

6.1.1. Benchmark problems

The benchmark problems are further divided into two subgroups. The first su-

bgroup consists of three problems from [43] called BNH, OSY and SRN. All the

problems are constrained and have two objectives. These three problems are relati-

vely simple and are used to measure how many exact evaluations can be saved with

surrogate-model-based algorithms in comparison to DEMO.

The second subgroup consists of the WFG test problems introduced in [44]. The

WFG toolkit is used to construct a suite of problems that provides a thorough test for

optimizers. The nine WFG problems, WFG1–WFG9, are formulated in such a manner

that each poses a different type of challenge to the optimizers. The WFG toolkit tests

the abilities of surrogate-model-based algorithms to find solutions comparable to the

ones gained with DEMO on simple as well as complex problems.
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Slika 6: Scheme of the steel casting process

6.1.2. The continuous steel casting problem

The continuous casting of steel is a very complex metallurgical process where mol-

ten steel is cooled and shaped into semi-manufactures of desired dimensions. The main

components of the casting system (schematically shown in Fig. 6) are the ladle, tun-

dish, mold and cooling subsystems [45].

The process of steel casting starts with molten steel being poured into a ladle from

an electric furnace and then led through the tundish that acts as a buffer for the liquid

metal, which is then drained into an open-base copper mold. The water-cooling inside

the mold cools the mold and the hot steel starts solidifying in contact with it. The

water flowing through the channels built into the walls of themold cools the steel. The

channels represent the primary cooling subsystem.

Molten steel with a thin solid shell, now called the strand, exits the base of the

mold into a spray chamber where it is immediately supported by closely spaced water-

cooled rollers. The strand is sprayed with water in the wreath and spray cooling areas

in order to increase the rate of solidification. Together, the wreath and spray cooling
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areas represent the secondary cooling subsystem.

When the steel exits the casting system, it is cut into billetsof the desired length.

The length of the liquid core in the strand is called the metallurgical length. The metal-

lurgical length, the thickness of the solid shell at the moldexit, and the strand surface

temperature at the unbending point have a large effect on thequality of the cast steel.

The optimization problem involves input variables (process parameters), output va-

riables, and the desired output values, determined by domain experts. The task is to

find the input variable settings resulting in values of the output variables as close as

possible to the desired values. Based on empirical knowledge in the steel production

domain, such settings result in high-quality steel.

Since the process of steel casting is expensive, time consuming and could also be

dangerous, it is necessary to have a model to make the optimization of the parameters

of the steel casting possible. To model the casting, the numerical model of steel casting

[46] was used. The four input variables of this numerical model that are being opti-

mized are the casting speed, the mold outlet coolant temperature, the wreath system

coolant flow, and the spray system coolant flow. The lower and the upper bounds for

those variables were also determined by experts.

Given the input parameters, the simulator computes the three output variables that

are essential for the quality of cast steel. The output variables are the metallurgical

length, the shell thickness and the surface temperature at the unbending point. As

an optimization criterion, the difference between the output variable produced by the

numerical simulator and its desired value is considered. Thus, the goal is to find such

values of the input variables that all the criteria would be 0or as close to 0 as possible.

The time needed to exactly evaluate one simulation of the steel casting process is

approximately 2 minutes on a 3.4-GHz Intel Core i7 computer with 8 GB RAM.

6.1.3. The ECG problem

The second real-world test problem is the problem of finding the best correlation

between a simulated and a measured ECG. An ECG is a diagnosticand monitoring tool

that records heart activity by measuring, on the body surface, the electrical currents

originating in the heart. Modeling the electrical activityof a human heart provides
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useful insight into the ECG generating mechanisms that can in turn be used to further

the understanding of the ECG and improve its diagnostic benefits.

For this problem the ECG simulator presented in [47] was used. The simulator

uses a simplified heart cell model consisting of the action potential (AP), a function

which defines the heart cells’ electrical activity. Since wefocus only on the difference

between the T waves of the ECG traces, the full resolution andcomplexity of this

simulator is not needed. Thus, a coarse model consisting of eight times fewer heart

cells than the original model was used, enabling a faster simulation.

The input parameters (variables of the optimization problem) of the simulator con-

sist of two groups of four parameters. Every group defines theAP of the heart’s cell

layer.

This optimization problem consists of two objectives. For every objective, the

objective function first calculates the Pearson correlation coefficient [48] between the

simulated ECG and the ECG measured on one of the two location points on the body.

Then, in order to get a minimization problem, the function calculates the objective

value (f ) by subtracting the Pearson correlation coefficient (PCC) from 1:

f = (1− PCC). (6)

When the simulated and the measured ECG are fully correlated,their Pearson correla-

tion coefficient is equal to 1 and the objective value is equalto 0.

Solving this optimization problem consists of finding the right combination of va-

riable values for setting the APs of the simulated heart in such a way that the simulated

ECG is as close as possible to the measured ECG.

The time needed to exactly evaluate one solution of the ECG problem is approxi-

mately 15 seconds on a 3.4-GHz Intel Core i7 computer with 8 GBRAM.

6.2. Experimental setup

For the purpose of determining the quality of the results obtained with the GP-

DEMO algorithm, a comparison was made with the DEMO algorithm and with the

surrogate-model-based algorithm called Generational Evolution Control (GEC). We

implemented GEC based on the algorithm NSGA-II-ANN from [14]. The basic idea
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of this algorithm is that during the optimization process insome generations all the

solutions are exactly evaluated, while in others, all the solutions are approximated with

a surrogate model. In their paper, the authors describe different versions of the NSGA-

II-ANN algorithm. For the purpose of this research we chose the version of the NSGA-

II-ANN algorithm that the authors claimed to be better than other versions. In this

version the number of generations for exact evaluations is three, followed by seven

generations of approximated solutions. This combination is then repeated during the

whole optimization process.

To be able to perform a fair comparison of the algorithms, some modifications had

to be made to the NSGA-II-ANN algorithm, and this modified algorithm is called GEC.

In the GEC algorithm, GP modeling was used for the modeling instead of the artificial

neural network (ANN), because the use of a different surrogate model would influ-

ence the results. Instead of the NSGA-II algorithm, the DEMOalgorithm was used to

ensure that the creation and combination of candidate solutions did not affect the re-

sults. At the end of the optimization process, in order to geta comparable hypervolume

and nondominated solutions, all the approximated nondominated solutions get exactly

evaluated. This ensures that the front of nondominated solutions is accurate and not

approximated.

The algorithm parameter values used for the testing were thesame for all three

algorithms. They were set as follows:

• maximum number of solution evaluations: 10000,

• population size: 100,

• weight: 0.5,

• crossover probability: 0.3,

• selection method: as in NSGA-II.

The maximum number of solution evaluations for the continuous steel casting pro-

blem was 3000 instead of 10000 in order to save time and because after 3000 solution

evaluations the hypervolume did not increase any more.
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The GP-DEMO and the GEC algorithms used GP modeling to createthe surrogate

models. The modeling technique and the parameter values used were the same in both

algorithms (see Section 3). The width of the confidence interval was equal to two

standard deviations. This means that the probability that the exactly evaluated solution

is within the confidence interval of the approximated solution is 95%. The sizes of the

active set and the window set were determined after trying different settings and were

chosen as the best compromise between the time needed to build the model and the

precision of this model for the approximation.The parameter values are following:

• active set size: 350,

• window set size: 500.

The window set is relatively small. This ensures that duringthe optimization pro-

cess, when approaching the optimum, the surrogate model uses only exactly evaluated

solutions close to the optimum. This locality enables the surrogate model to be more

precise, thus making the confidence interval narrower during the optimization.

The experiments were run 30 times for each of the benchmark problems and 10

times for each of the real-world problems because of similarresults and in order to

save time.

6.3. Results

For every problem and for every algorithm four different measures were obtained:

• number of exact evaluations performed during the optimization process,

• final hypervolume,

• duration of the optimization process,

• number of nondominated solutions on the final front.

The results averaged over all the runs are presented in Tables 1–3.

For every problem the final fronts of all the tested algorithms are shown in Fig.

7–20.
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Tabela 1: Results on BNH, OSY and SRN test problems

Število eksaktno Optimizacijski Nedominirane

Problem Algoritem ovrednotenih rěsitev Hipervolumen čas rěsitve

BNH

DEMO 10000 0.6880 00:00:05 100

GP-DEMO 401 0.6880 00:05:47 100

GEC 3080 0.6878 00:14:18 100

OSY

DEMO 10000 0.9643 00:00:05 100

GP-DEMO 1485 0.9646 00:24:36 100

GEC 3078 0.9643 00:23:08 99

SRN

DEMO 10000 0.9547 00:00:05 100

GP-DEMO 267 0.9550 00:02:49 100

GEC 3091 0.9553 00:14:53 100

6.4. Discussion

The evaluation of the GP-DEMO algorithm was done by comparing it with two

other multiobjective evolutionary algorithms. The first one is DEMO, which is known

to be very effective and was used for comparing the quality ofthe results. The second

one is GEC, a surrogate-model-based multiobjective evolutionary algorithm that was

used to compare both the quality of the results and the numberof exactly evaluated

solutions performed during the optimization process.

The first set of benchmark optimization problems that was used for the testing

(BNH, OSY and SRN) is composed of relatively simple optimization problems. Beca-

use of this simplicity, the GP modeling technique is able to create very precise models

of their objective functions. Therefore, the approximatedsolutions have very narrow

confidence intervals and are rarely required to be exactly evaluated. The comparison

of the solutions with very narrow confidence intervals can usually be done without

exactly evaluating them. This results in the GP-DEMO and GECgetting almost the

same hypervolume as DEMO, but with fewer exactly evaluated solutions. On these

problems, GP-DEMO exactly evaluated only between 3 % (BNH and SRN) and 15

% (OSY) of all the solution evaluations. The particularity of the GEC algorithm is

that the number of exact evaluations performed during the optimization process differs
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Tabela 2: Results on WFG test problems

Število eksaktno Optimizacijski Nedominirane

Problem Algoritem ovrednotenih rěsitev Hipervolumen čas rěsitve

WFG1

DEMO 10000 0.9376 00:00:10 72

GP-DEMO 8291 0.8965 02:42:01 51

GEC 3100 0.7512 00:38:08 11

WFG2

DEMO 10000 0.9643 00:00:09 100

GP-DEMO 3991 0.9640 02:22:54 100

GEC 3003 0.9605 00:38:11 44

WFG3

DEMO 10000 0.9594 00:00:10 100

GP-DEMO 4864 0.9594 02:21:26 100

GEC 3023 0.9579 00:37:26 85

WFG4

DEMO 10000 0.9340 00:00:10 100

GP-DEMO 3508 0.9288 02:33:52 94

GEC 3025 0.9248 00:37:13 25

WFG5

DEMO 10000 0.9154 00:00:09 100

GP-DEMO 6710 0.9143 02:10:04 100

GEC 3083 0.9135 00:38:56 73

WFG6

DEMO 10000 0.9365 00:00:09 100

GP-DEMO 2003 0.9216 02:24:44 71

GEC 3019 0.9309 00:37:33 70

WFG7

DEMO 10000 0.9368 00:00:09 100

GP-DEMO 7897 0.9368 02:52:01 100

GEC 3080 0.9155 00:38:42 23

WFG8

DEMO 10000 0.8653 00:00:10 98

GP-DEMO 3273 0.8649 02:22:14 89

GEC 3022 0.8558 00:36:33 57

WFG9

DEMO 10000 0.9207 00:00:09 100

GP-DEMO 8988 0.9204 02:42:01 100

GEC 3077 0.8911 00:35:18 13
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Tabela 3: Results on real-world test problems

Število eksaktno Optimizacijski Nedominirane

Problem Algoritem ovrednotenih rěsitev Hipervolumen čas rěsitve

Kontinuirno ulivanje

DEMO 3000 0.5078 112:22:37 100

GP-DEMO 950 0.5078 36:20:05 100

GEC 1090 0.5074 39:28:39 97

EKG

DEMO 10000 0.9987 39:21:19 100

GP-DEMO 8135 0.9986 36:35:18 100

GEC 3100 0.9937 13:16:04 22

very little from one problem to another. Since in three out often generations the newly

created solutions are exactly evaluated, in our case, with the maximum number of eva-

luated solutions equal to 10000, the number of exactly evaluated solutions is at least

3000. Additional exact evaluations are performed at the endof the optimization process

where all the approximated solutions are exactly evaluated. Because of this strategy the

number of exact evaluations performed with GEC varies between 3000 and 3100 on all

the problems, which is a little more than 30 % of all the evaluated solutions.

The WFG test problems were the second set of benchmark problems. These pro-

blems are known to be hard optimization problems designed tothoroughly test any

algorithm. Because of their complexity, the WFG objective functions are very diffi-

cult to model. This results in two possible problems. The first problem is that the

confidence intervals of the approximated solutions are wider than on the previous set

of test problems. Therefore, many solutions need to be exactly evaluated and the re-

duction in the number of exactly evaluated solutions was only between 10 % and 80

%. Secondly, the GP model could be in some cases overconfidentin what are actu-

ally wrongly approximated predictions. Such cases occur when the modeled function

has sudden changes in values and the GP model identifies thesechanges as outliers

or noise. As the GP model, due to the probabilistic nature, smooths them, the appro-

ximation is wrong. When such changes are relatively large compared to the “usual”

changes, the variance of the approximation is small and therefore the exact value is

not inside the confidence interval. In order to prevent solutions from falling out of the
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confidence interval, we could make the confidence interval wider, e.g., three standard

deviations, but since this happens rarely and the final results are still good, we did not

change the width of the confidence interval. This case occurred mainly on the WFG1

problem and the hypervolume obtained with GP-DEMO was slightly worse compared

to DEMO (Fig. 10). The hypervolume values on the other WFG problems are very

similar. Although the solutions get closer together duringthe optimization, the number

of exact evaluations does not increase. The approximationsget more precise, resulting

in narrower confidence intervals, which rarely overlap.

The results gained with GEC on the WFG test problems are the worst on almost

all the problems. The final fronts have fewer solutions and lower hypervolumes. Beca-

use the GEC algorithm does not use the confidence interval when comparing solutions,

the mistakes where an approximated solution wrongly dominates the other solutions

occur more often. Because the surrogate models for the WFG test problems are not

very accurate, the approximation errors are larger and morefrequent. On all the WFG

test problems, just before the end of the optimization process, the final fronts gained

with GEC consisted of 100 solutions and their hypervolumes were competitive. After

exactly evaluating these solutions, the results got worse.The reason why algorithms

like GEC face this dificulty is that early in the optimizationprocess a wrongly approxi-

mated solution appears to be very good. This solution then prevents other high-quality

solutions from staying in the population because it dominates them. At the end of

the optimization process this solution is exactly evaluated as a low-quality solution,

lowering the hypervolume since a part of the decision space gets weakly covered.

The analysis of the results from the real-world test problems show similar findings.

The difference with real-world problems is that the whole optimization process takes

longer because every exact solution evaluation is computationally expensive.

The first real-world problem is the problem of optimizing thecontinuous casting

process in order to get the best possible quality of cast steel. The GP modeling te-

chnique is able to create an accurate surrogate model of the continuous steel casting

process so the hypervolume and the size of the final front werealmost identical for all

three algorithms. The GP-DEMO algorithm exactly evaluatedjust a little over 30 %

of all the solution evaluations. This percentage would be even higher if the stopping
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Slika 7: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the BNH problem
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Slika 8: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the OSY problem
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Slika 9: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the SRN problem
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Slika 10: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG1 problem
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Slika 11: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG2 problem
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Slika 12: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG3 problem

33



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5

f2

f1

DEMO
GP-DEMO

GEC

Slika 13: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG4 problem
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Slika 14: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG5 problem
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Slika 15: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG6 problem
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Slika 16: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG7 problem
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Slika 17: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG8 problem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5

f2

f1

DEMO
GP-DEMO

GEC

Slika 18: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the WFG9 problem
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Slika 19: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the ECG problem
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Slika 20: Fronts of non-dominated solutions found by DEMO, GP-DEMO and GEC on the continuous steel

casting problem
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criterion would allow more than 3000 solution evaluations,because at the beginning

the surrogate model is not as accurate as it becomes after updates. With more precise

surrogate models, the confidence intervals become narrowerand less exact evaluations

are needed. Because one exact evaluation takes more than twominutes, the time nee-

ded for optimization with GP-DEMO on this problem is three days shorter than with

DEMO.

The analysis of the results on the ECG problem shows similar algorithm beha-

vior as was seen on the WFG test problems. The surrogate modelscreated during the

optimization process return quite narrow confidence intervals. However, because the

solutions on the front are very close to zero, and also very close to one another, this

confidence interval still turns out to be relatively wide. This then results in GP-DEMO

achieving a small saving in the number of exactly evaluated solutions, but still mana-

ging to get results that are as good as the ones gained with theDEMO algorithm. The

GEC algorithm has difficulties once again in reaching the same quality of results, and

the number of nondominated solutions on the final front is small.

If we compare the times needed for optimization we can see that for the bench-

mark problems, where one exact evaluation is almost instant, DEMO finds final fronts

in a few seconds. With GP-DEMO and GEC the optimization timesare longer beca-

use of the time spent building the surrogate models. The timeneeded for updating the

surrogate models during the optimization process depends on the number of exactly

evaluated solutions that are used for training, the complexity of the objective function,

and also of the number of objectives, because for every objective a separate surrogate

model is created. Since the exact evaluation of 10000 solutions on benchmark opti-

mization problems takes just a few seconds, the time needed to update the surrogate

models is approximately the same as the optimization time (see Tables 1 and 2). If the

solution evaluations are very fast, the DEMO algorithm is the best, but on real-world

problems, where exact solution evaluations take more time,GP-DEMO becomes more

suitable because the optimization times are shorter and thequality of the results is

comparable to the quality obtained with DEMO. In comparisonwith the other two al-

gorithms, GEC sometimes needs fewer exact function evaluations, but its disadvantage

is that the quality of the results is worse (see Tables 2 and 3).
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Tabela 4: Border time (in seconds) for one exact solution evaluation where optimization time for GP-DEMO

and DEMO take the same amount of time.

BNH OSY SRN WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

0.04 0.2 0.02 5.7 1.4 1.6 1.4 3.4 1.1 4.9 1.3 9.5

For the benchmark problems we calculated how long one exact solution evaluation

should take, so that the optimization times of GP-DEMO and DEMO would be equal.

These border times are shown in Table 4. If the time needed forone exact solution

evaluation is known, this helps us choose which algorithm touse in order to get good

results as fast as possible. On the test problems that can be accurately modeled the

border times are very short and on problems with less accurate surrogate models these

times are slightly longer. These times could be further reduced by optimizing the GP

modeling procedure. For example, the update of the surrogate models could be made

parallel for every objective and also the update of the GP models could perhaps be

performed less often.

7. Conclusion

In this paper, the newly developed surrogate-model-based multiobjective evolutio-

nary algorithm GP-DEMO is presented. GP-DEMO is based on thealgorithm DEMO

using the GP model as a surrogate model for approximating solutions. To prevent wron-

gly performed comparisons of the solutions due to inaccurate approximated solutions,

new relations for comparing solutions under uncertainty issuggested. These relati-

ons, also considering the confidence intervals of the approximation, are used for every

comparison during the optimization process instead of the Pareto dominance relations.

This prevents cases where an inaccurately approximated solution wrongly dominates

a better solution, which results in slowing the optimization process or even in not fin-

ding the best solutions. The comparison of the candidate andparent solutions and the

selection process for maintaining the population size are modified in such a way that

we determine which solutions should be exactly evaluated tominimize the possibility

of a wrongly performed comparison and still find optimal results with as few exact

evaluations as possible.
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We tested GP-DEMO on 12 different benchmark and two computationally expen-

sive real-world problems. To assess the quality of the result, we solved those problems

with another surrogate-model-based multiobjective evolutionary algorithm called GEC

and with DEMO. The assessment was based on the number of exactly evaluated soluti-

ons, hypervolume value, optimization time and the number ofnondominated solutions

on the final front.

Comparing the hypervolume and the highest number on nondominated solutions on

the final fronts, DEMO, as expected, obtained the best results, but the number of exac-

tly evaluated solutions was a maximum as there is no solutionapproximations. On the

other hand, the hypervolume values and the number of solutions on the final fronts ob-

tained by GP-DEMO were almost identical to those obtained byDEMO on almost all

the problems, but the number of exactly evaluated solutionsperformed by GP-DEMO

was much lower, between 4% and 80% of all the exact evaluations, depending on the

problem. In comparison to GP-DEMO and DEMO, the GEC algorithm obtained simi-

lar hypervolume values and the number of solutions on the final fronts on less complex

problems, but worse on more complex problems due to the previously described pro-

blem of wrongly performed comparisons. As GEC has fixed evolution control, the

number of exactly evaluated solutions was around 30% of all the evaluations.

A comparison of the optimization time shows that for benchmark problems DEMO

is the most suitable of the compared algorithms, but it is notsuitable for computati-

onally expensive real-world problems. In contrast, both surrogate-model-based evo-

lutionary multiobjective algorithms are more suitable forcomputationally expensive

real-world problems, because the time needed for training and updating the surrogate

models on benchmark problems takes up most of the whole optimization time.

As the quality of the results obtained by GP-DEMO and DEMO wasvery similar,

we calculated the border time of one exact solution evaluation. If the exact solution

evaluation is longer than the border time, then the optimization time of DEMO is longer

than the optimization time of GP-DEMO. Therefore, we can saythat in the case of a

multiobjective optimization problem where one solution evaluation takes more than the

border time and the quality of the results is important, GP-DEMO should be used.

Our future work will focus on improving the GP-DEMO algorithm. The first pos-
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sibility is to speed up the optimization time by updating allthe surrogate models after

each generation in parallel. Later on we will work on GP modeling in order to speed

up the update process and achieve approximations more accurately. Finally, instead of

using a single model the algorithm will be extended to exploit two surrogate models, a

global one, covering the whole space, and a local one, concentrating only on the current

best solutions, but in greater detail.
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[35] B. Grǎsič, P. Mlakar, M. Z. Bǒznar, Ozone prediction based on neural networks

and Gaussian processes, Nuovo Cimento C 29 (2006) 651–661.

[36] B. Likar, J. Kocijan, Predictive control of a gas-liquid separation plant based on

a Gaussian process model, Computers & Chemical Engineering31 (3) (2007)

142–152.

[37] F. A. Viana, R. T. Haftka, L. T. Watson, Efficient global optimization algorithm

assisted by multiple surrogate techniques, Journal of Global Optimization (2012)

1–21.

[38] J. Quinonero-Candela, C. E. Rasmussen, C. K. I. Williams, Approximation me-

thods for Gaussian process regression, Tech. Rep. MSR-TR-2007-124, Microsoft

Research (2007).

[39] J. Quinonero-Candela, C. E. Rasmussen, A unifying viewof sparse approximate

Gaussian process regression, The Journal of Machine Learning Research 6 (2005)

1939–1959.

[40] E. Snelson, Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs, in:

Advances in Neural Information Processing Systems 18, MIT Press, 2006, pp.

1257–1264.

[41] K. V. Price, R. Storn, Differential evolution – A simpleevolution strategy for fast

optimization, Dr. Dobb’s Journal 22 (4) (1997) 18–24.

[42] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective

genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation

6 (2) (2002) 182–197.

[43] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 1st Edi-

tion, Wiley, New York, 2001.

45



[44] S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test

problem toolkit, in: Evolutionary Multi-Criterion Optimization – EMO 2005, Vol.

3410 of Lecture Notes in Computer Science, Springer, Berlin, 2005, pp. 280–295.
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