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Abstract

This paper proposes a hovel surrogate-model-based mjeltidke evolutionary algo-
rithm called Differential Evolution for Multiobjective Qjmization Based on Gaussian
Process Models (GP-DEMO). The algorithm is based on theyndefined relations
for comparing solutions under uncertainty. These relatimmimize the possibility of
wrongly performed comparisons of solutions due to inadewsarrogate model appro-
ximations. The GP-DEMO algorithm was tested on several fymack problems and
two computationally expensive real-world problems. To bkedo assess the results
we compared them with another surrogate-model-basedithligocalled Generational
Evolution Control (GEC) and with the Differential Evolutidor Multiobjective Opti-
mization (DEMO). The quality of the results obtained with-GEMO was similar to
the results obtained with DEMO, but with significantly fevesactly evaluated solu-
tions during the optimization process. The quality of theufts obtained with GEC
was lower compared to the quality gained with GP-DEMO and @Evhainly due to
wrongly performed comparisons of the inaccurately appnated solutions.
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1. Introduction

Optimization problems are present in our everyday life amiohe in a variety of
forms, e.g. the task to optimize certain properties of aesysby correctly choosing
the system parameters. Many of these optimization probiemsre the simultaneous
optimization of multiple, often conflicting, criteria (obgectives). These problems
are called multiobjective optimization problems. The $oluto such problems is not
a single point, but a family of points, known as the Parettrogl set. This set of
solutions gives the decision maker an insight into the attarstics of the problem
before a single solution is chosen.

One of the most effective ways to solve problems with morecbjes is to use
multiobjective evolutionary algorithms (MOEAS). MOEAsegpopulation-based algo-
rithms that draw inspiration from optimization procesdes bccur in nature. During
the optimization process, in order to find a Pareto-optiraglalot of different soluti-
ons have to be assessed (evaluated). If these solutioraéiealsi are computationally
expensive, the whole optimization process can take a lotnaf.t

In order to obtain the results of such an optimization prohieore quickly, we can
use surrogate models in the optimization process to appeiei the objective functi-
ons of the problem. To evaluate a solution, instead of usitim@-consuming exact
evaluation, a solution can be approximated with the suteogedel. Since one solu-
tion approximation is (much) faster, the whole optimizatwocess can be accelerated.
However, note that the time needed to create and update tlagyate models during
the optimization process has to be considered and includiae iwhole duration of the
optimization process. So, in the case where the exact solatialuations are quick, it
can happen that the surrogate-model-based optimizaties tanger than the optimi-
zation without surrogates.

In surrogate-model-based multiobjective optimizatigppraximated values are often
inappropriately used in the solution comparison. As a cgmerce, exactly evalua-
ted good solutions can be discarded from the populationusecthey appear to be
dominated by the inaccurate and over-optimistic approtiona. This can slow the

optimization process or even prevent the algorithm fromifigdhe best solutions.



Some surrogate models provide a distribution, from whiehapproximated value
and also the confidence interval of the approximation canabeutated. Using this
confidence interval, we define new dominance relations #kat into account this un-
certainty and propose a new concept for comparing solutimer uncertainty that
requires exact evaluations only in cases where more cgrigineeded. This minimi-
zes the mistakes made in comparisons of inaccurately ajppated solutions.

Based on this concept we propose a new surrogate-moded-trageobjective evo-
lutionary algorithm, called Differential Evolution for Miiobjective Optimization Ba-
sed on Gaussian Process Modeling (GP-DEMO). This algorighem extension of the
Differential Evolution for Multiobjective OptimizationGdEMO) algorithm [1], which
uses differential evolution to effectively solve numetigaultiobjective optimization
problems. In addition, DEMO also emphasizes the variatigerators and compared
to for instance hypervolume-based search is comparablgpctmeterms of computa-
tional effort. In the GP-DEMO, Gaussian Process (GP) madel employed to find
approximate solution values together with their confidentervals. Then, instead of
comparing the solutions using the Pareto dominance ralg@®-DEMO uses the new
uncertainty-based dominance relations, requiring exaduations of solutions as nee-
ded. The efficiency of GP-DEMO is assessed on several bemkland two real-world
optimization problems.

The structure of this paper is as follows. In Section 2, werdeg the work done
in the field of surrogate-model-based optimization, esglydn multiobjective optimi-
zation. In Section 3, we describe the Gaussian Process mgdkét is used to build
the surrogate models in GP-DEMO. Then, in Section 4, we destine new relations
and methods for comparing solutions (presented with andowttuncertainty). The
GP-DEMO algorithm is presented in Section 5. In Section 6,t@& and compare
GP-DEMO with two other algorithms on benchmark and realtevorultiobjective op-
timization problems. Finally, Section 7 concludes the papi¢h a summary of the

work done and our ideas for future work.



2. Related Work

In the literature the term surrogate model (sometimes als@amodel) based op-
timization is used where, during the optimization processeme solutions are not
evaluated with the original objective function, but are mpmated using a model of
this function. Different modeling methods are used to bthikel surrogate models. For
single and multiobjective optimization similar methode ased. These methods typi-
cally return only one approximated value, which is why in tinldjective problems
several models have to be used, so that every model appr@smae objective. Some
of the most commonly used methods are the Response Surfated/], Radial
Basis Function [3], Neural Network [4], Kriging [5] and Gaien Process Modeling
[6, 7, 8].

In single-objective optimization, the usage of surrogatslats is well established
and has proven to be successful. In the literature manyrédiffalgorithms and various
modeling techniques are used to solve benchmark and redd-wmblems [9, 10].
The results typically show that the surrogate-model-baggidnization in comparison
with optimization without surrogates provides comparaigleults in fewer objective
function evaluations [11, 12]. The use of differential exan in combination with
surrogate models is mentioned in [9]. The authors preseamealgorithm based on
differential evolution that generates multiple offspriiog each parent and chooses the
promising one based on the confidence and the approximdtibie current surrogate
model.

In the field of surrogate-model-based multiobjective optation, where the result
is not just one solution but a non-dominated front of sohsiahe problem of finding
these solutions is even more challenging. There are mampagiges that differ in
terms of which solutions are approximated and how they useagpiproximations. Su-
rrogate models can aim at either a global approximation efothiective function, or
a local one, focusing on the neighborhood of the best cumelntiduals. In [12], the
authors used a combination of local and global surrogatestaddr solving optimiza-
tion problem of Aerodynamic Shape Design.

Within surrogate-model-based optimization algorithmsechanism is needed to



find a balance between the exact and approximate evaluatioesolutionary algori-
thms this mechanism is called evolution control [13] andlearither fixed or adaptive.

In fixed evolution control, the surrogate model is traineohirpreviously exac-
tly evaluated solutions and then used directly instead pépsgive objective function
evaluations. In this approach the number of exact functi@iuations that will be
performed during the optimization is known in advance. HEiggolution control can
be further divided into generation-based control, whersoime generations all soluti-
ons are approximated and in the others they are exactlyateal(i14], and individual
based control, where in every generation some (usuallyel8 Bolutions are exactly
evaluated and others approximated [15].

In adaptive evolution control, the number of exactly evaddasolutions is not
known in advance, but depends on the accuracy of the modéhdogiven problem.
Adaptive evolution control can be used in one of two ways: @& of a memetic
search or to pre-select the promising individuals whichtlaea exactly evaluated [16].

In a memetic algorithm, an additional algorithm (e.g., alggat-based or an evolu-
tionary algorithm) is used to find the optimal solutions gdime surrogate model. Once
this optimum is found, the best solutions are exactly evathand used for updating
the model. In [17], aggregated surrogate models are usethgnaetic algorithm. The
model is based on the distance to the currently known, nonititted set and is used
to find new, non-dominated individuals using local search.miemetic algorithms,
especially if the surrogate model is not very accurate, alloptimum is often found
instead of the global optimum.

In the case of pre-selecting the promising individuals,stheogate model is used
to find the promising or drop the low-quality individuals evieefore they are exactly
evaluated, thus reducing the number of exact evaluationms.ekample, OEGADO
[18] creates a surrogate model for each of the objectives. bESt solutions in every
objective get also approximated on other objectives, whielps with finding trade-
off individuals. The best individuals are then exactly exd and used to update the
models. ParEGO [19] uses the weighted sum of the objectetifons to perform a
local search. The weights are generated randomly for eaddtiiin. When a different

model is used for each of the functions, the conversion flzemultiobjective problem



to the single-objective one has to be performed (or a myélye optimizer has to be
used on the models). Moreover, if there are more models, ¢neirs can add up, as
well as the time needed to train the models.

Surrogate models are also used to rank and filter out offg@cording to Pareto-
related indicators like the hypervolume [20], or a weighgeadh of the objectives [21].
The problem with the methods that use hypervolume as a wandihfi promising
solutions is the calculation time needed to calculate th@ehyolume, especially on
many objectives. Another possibility is described in [22here the authors present an
algorithm that calculates only non-dominated solutionsalutions that can, because
of variance, become non-dominated.

Some surrogate models, in addition to the approximationeyadlso return the
certainty of the prediction. The use of this confidence imfation can help to increase
the prediction accuracy of the surrogate model. In [10],abthors use confidence
information to guide the search towards less explored regiothe search space. The
confidence of the prediction with the approximated valuelmanised to calculate the
criterion of expected improvement. Approaches to applyimg criterion are analysed
in [23], while an algorithm using this criterion to decide s solutions should be
exactly evaluated is presented in [24].

During the comparison of solutions in the surrogate-mdudeded optimization, it
can happen that an incorrectly approximated solution isged as the better of two
compared solutions. As multiobjective optimization altfans usually discard domi-
nated solutions, a good, exactly evaluated solution migHobt in such a case. Simi-
larly, if a good solution is incorrectly approximated as s@rthis solution is discarded.

To prevent these unwanted effects, we propose a new coraregirhparing solu-
tions under uncertainty, where in addition to the approxadaalue of a solution, its
variance is considered. In [25], the authors tackle a nominozation problem with
an algorithm that compares the solutions with uncertainty, & necessary, performs
additional evaluations of the same solution to minimizeutheertainty and, if possible,
decide which solution is better. A theoretical presentatibthe solution comparison
under uncertainty was presented in [26] for optimizatioobpems where the uncerta-

inty of the solutions cannot be reduced by the sampling nuisth®he authors suggest



a strong Pareto dominance relation in cases when the doo@rstatus can be determi-
ned, and weak Pareto dominance relation when, because@rtaimty, the domination
status could not be determined. In this case the expecteds/ébr every solution are
assumed and these values are then compared. In [27], d pesteaapproach is sugge-
sted to enable the comparison of solutions presented witfidance intervals. This
approach does not differentiate between the cases wheupplee border of the first in-
terval dominates the lover border of the second intervalthadases where some part
of intervals overlap. Very similar approach to handle sohg presented with intervals,
called imprecise Pareto relations, was presented in [BgR9], the authors define bo-
unding boxes to represent the solutions with confidencevale But the comparison
of solutions is again simplified to the rejection of indivads with a small probability
to be competitive, or to the exact evaluation of solutionigha high probability to be
better. In our paper, we adjust the comparison of solutionsdirrogate-model-based
multiobjective optimization and apply this comparisontie GP-DEMO algorithm to

ensure that the best solutions are preserved in the optionizarocess.

3. Gaussian Process Models

The Gaussian process (GP) models are probabilistic, ncarric, models based
on the principles of Bayesian probability, which can be ugedoth regression and
classification problems. The name GP models refers to thevga®n that a prior on
the function to be modeled is a stochastic process with a alodistribution, i.e., a
Gaussian process (GP).

The GP regression is more or less identical to the Kriginghimet{30], which
is widely used in the field of geostatistics. As a geostatidtmethod, it is mostly
used for two- and three-dimensional input spaces and terigasdre any probabilistic
interpretations [31, 5]. Since the introduction of GPs ipawised learning [32], GP
models have been used for modeling in various fields, eggdical systems [33, 34],
environmental systems [35], chemical engineering [36]mady others.

The GP models differ from most of the other black-box idecifion approaches

in that they do not try to approximate the modeled system bgdithe parameters of



the selected basis functions, but rather by searching fatisaships among the mea-
sured data. The output of GP models is a normal distribuérpressed in terms of the
mean and the variance. The mean value represents the nedgtdikput and the va-
riance can be interpreted as a measure of its confidence.blamed variance, which
depends on the amount and the quality of the available tgidata, provides impor-
tant information when it comes to distinguishing GP modedat other computational
intelligence methods.

As GP models are, due to their probabilistic nature, sugtédnl interpolation, i.e.,
when data is missing, and in addition to the mean value algeige variance, they

were already used in stochastic optimizations with sutegadels [37].

3.1. Gaussian Process Modeling

A GP is a collection of random variables that have a joint ivaittate Gaussian
distribution. Assuming a relationship of the forgn= f(x) between inputx and
outputy, we haveyi,...,yn ~ N(0,K), whereK,, = Cov(yp,yq) = C(xp,Xq)
gives the covariance between the output points correspgridithe input points,
andx,. Thus, the meap(x) and the covariance functiafi(x,, x,) fully specify the
GP.

The value of the covariance functi@i(x,, x,) expresses the correlation between
the individual outputsf (x,) and f(x,) with respect to inputs, andx,. It should be
noted that the covariance functidi(-, -) can be any function that generates a positive
semi-definite covariance matrix.

A commonly used covariance function is a composition of tipgase exponential
covariance function with “automatic relevance determorét(ARD) hyperparameters
[8] and the constant covariance function assuming whitsenoi

D

1
C(xp,Xq) = v1 €xp -3 Z wa(Tap — Tag)?| + pqvo, (1)
d=1

wherewy, v; andvg are the hyperparameters of the covariance functidis the input
dimension, and,, = 1 if p = ¢ and0 otherwise. Other forms and combinations of
covariance functions suitable for various applicationslmafound in [6]. The hyperpa-

rameters can be written as a vec®r= [w, ..., wp, vi,vo]L. The hyperparameters



wy indicate the importance of individual inputs.uf; is zero or near zero, it means the
inputs in dimensiorl contain little information and could possibly be neglected

To accurately reflect the correlations presented in thaitrgidata, the hyperpara-
meter values of the covariance function need to be optimibee to the probabilistic
nature of the GP models, instead of minimizing the modelrethe probability of the
model is maximized.

Consider a set oV D-dimensional input vectorX = [xi, Xo,...,xx]|? and a
vector of output datg = [y, 99, . .., yn]. Based on the datgX, y), and given a new
input vectorx*, we wish to find the predictive distribution of the corresgimgy output
y*. From the training seX, a covariance matri¥ of size N x N is determined.
The overall problem of learning unknown parameters fronadatrresponds to the
predictive distributiom(y* |y, X, x*) of the new targeg, given the training datgy, X)
and a new inpuk*. In order to calculate this posterior distribution, a piddstribution
over the hyperparametep$®|y, X) can first be defined, followed by the integration

of the model over the hyperparameters

Py, X, x%) = / (518, v, X, x*)p(Bly, X)d®. @)

The computation of such integrals can be difficult due to thectable nature of
the non-linear functions, therefore, the general pradtcestimating hyperparameter
values is the maximum-likelihood estimation, i.e., mirding the following negative

log-likelihood function:
1 1 _ N
L(®) = —log(| K ) - 5y Ky — < log(2m). 3)

GP models can be easily utilized for regression calculati@ased on the training
setX, a covariance matriK of size N x N is calculated. The aim is to find the
distribution of the corresponding outpyt for some new input vectat™ = [z, (N +
1),z2(N +1),...,2p(N +1)].

The predictive distribution of the output for a new test inpas a normal probabi-

lity distribution with a mean and variance

u(y) =k(x") "K'y, (4)

o*(y") = K(x") — k(x") K k(x"), ()



wherek(x*) = [C(x1,x*),...,C(xn,x*)]T isthe N x 1 vector of covariances be-
tween the test and the training cases, afd') = C(x*,x*) is the covariance between
the test input itself.

As can be seen from (5) the GP model, in addition to a mean yvalse provides
information about the confidence of prediction using theéavare. Usually, the confi-
dence of the prediction is depicted witl2a interval, which corresponds to abdi%
of the confidence interval. Considering the confidence valsrof all predictions, we
obtain a confidence band, shown in grey in the example in Fighighlights the areas
of the input space where the prediction quality is poor, dubé¢ lack of data or noisy

data, by indicating a wider confidence band around the pesdiimean.
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Slika 1: Modeling with GP models: in addition to the mean vajprediction), we obtain a 95% confidence

band for the underlying functiofi (shown in grey).
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3.2. Sparse approximation

A noticeable drawback of “full” GP modeling is the computetiload that increa-
ses with the third power of the amount of input data due to #heutation of the inverse
of the covariance matrix. This computational complexitgtriets the amount of train-
ing data to, at most, a few thousand cases. As multiobjeetiautionary algorithms
usually require more than a few thousand evaluations, wéeche as the training data
for GP models, “full” GP modeling does not seem to be viableofar needs.

To overcome the computational-limitation issues and cgmeetly to make the me-
thod viable for large-scale dataset applications, sucloafastic optimization, nume-
rous authors have suggested various sparse approximatigusvey of such methods
can be found in [38, 39]. A common property of all these spagggroximation me-
thods is that they try to retain the bulk of the informatiomtzned in the full training
dataset, but reduce the size of the covariance matrix so tecildate a less com-
putationally demanding implementation of the GP model. dllguthis subset of the
training data is called the active set. The computationalpiexity of such algorithms
is O(NM?), whereN is the amount of training data and is the size of the active
set.

We decided to use a state-of-the-art, sparse-approximatethod named Sparse
Gaussian Processes using Pseudo-inputs (SPGP) [40], ishitlyeneral determined
as a fully independent training conditional approximatjdf, 38]. The idea of this
method is that instead of selecting a subset of the trainatg, dt rather optimizes the
locations ofM pseudo-inputs, as this seems to be easier to solve tharstiretdi subset
selection problem. The pseudo-input locations are opéthtzased on the covariances
between the training data points and the pseudo-inputs.

It should be noted that due to fewer data points being inqatpd into the model
(covariance matrix) and their arbitrary locations, thetposer of the SPGP model,
especially the variance, can be somewhat different to thegor of a “full” GP model.
Such a case is illustrated in Fig. 2. Itis clear that the medunevis very similar to
the mean value obtained with the “full” GP model (Fig. 1), e variance (95%
confidence interval) is distinctly different from the var@e obtained by the “full” GP
model (Fig. 1).

11
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Slika 2: Modeling with SPGP models: pseudo-inputs (dots)aabérarily located, i.e., not a subset of the

training data points (circles).

4. Relations in Multiobjective Optimization

A multiobjective optimization problem (MOP) consists ofding the minimum of
the function:
[ X—>Z
fi(@y,enxn) = (fi(xr, e @n), ooy fin (X1, 0y Tn))s
wheren is the number of variables and is the number of objectives, and where each
solutionz = (x1,...,2,) € X is called adecision vectgrwhile the corresponding
elementz = f(x) € Z is anobjective vectar We use this problem formulation to

describe the relations between the the solutions preseiitieout and with uncertainty.

4.1. Relations without uncertainty
First, consider the case where all solutions of a MOP aretlgxacaluated. As a

rule, two solutions can be in exactly one of the followingifoelations.
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Definition 4.1 (Pareto dominancg. The objective vectot dominateshe objective
vectorw, z < w, iff z; < w; forall j € {1,...,m} andz, < wy, for at least one
ke{l,..,m}.

Definition 4.2 (weak Pareto dominancé. The objective vectot weakly dominates

the objective vectow, z < w, iff z; < w; forall j € {1,...,m}.

Definition 4.3 (strict Pareto dominance. The objective vector strictly dominates

the objective vectow, z << w, iff z; < w, forall j € {1,...,m}.

Whenz = f(z),w = f(y) andz (weakly or strictly) dominates, we say that
solutionz (weakly or strictly) dominates solutign In other words, solutiom is equal
to or better than solutiop. The weak Pareto dominance is a natural generalization of
the < relation, and the strict Pareto dominance is the naturatigdination of the<

relation.

Definition 4.4 (incomparability). The objective vectors and w are incomparable
zl|w, iff z A wandw £ z.

Again, if z andw are incomparable, solutionsandy are incomparable.

4.2. Relations under uncertainty

Now consider the case where the objective values of theispkiare approxima-
ted by a surrogate model, e.g., a GP model, that is also alpletide the confidence
interval for each approximated value. In such a case, thelatd relations descri-
bed previously are not suitable, but need to be adapted wranodate the uncerta-
inty. Every solutionz is represented with a vector of approximated objectiveaslu
z = (#1, 22, ..., zm) @and a vector of confidence intervals in each objective (¢, &5,
...€m). In order to be able to compare the solutions representdusniay, the re-
lations between the solutions under uncertainty are definetthebounding boxesf
their objective values. From the vectors of the approxichatdues and the confidence

intervals thebounding boof an objective vector is designed as (Fig. 3):

BB(z,e) = [21 — 1,21 + 1] X [22 —€2,22 — €3] X oo X [Zim — Emy Zim — Em)-

13
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Slika 3: The bounding box of an objective vector

Definition 4.5 (probable Pareto dominancg. The bounding boBB(z, ¢) probably
dominates the bounding bdxB(w, ), BB(z,e) <. BB(w,d), iff for every:* €
BB(z,¢) and everyw® € BB(w, §): 2* < w'.

If z = f(x) with confidencez, w = f(y) with confidenced andBB(z,¢) <,
BB(w, ¢), then solution: probably dominates solutian In other wordsg dominates
y with a (high) confidence (depending erand?).

Fig. 4 presents the objective valugs .., z° and their bounding boxes. We can see
thatz' probably dominates solutiorf (2! <, z%).

Analogously, other relations can be defined.

Definition 4.6 (probable Pareto non-dominancg. The bounding boBB(z, ¢) is pro-
bably non-dominated by the bounding B®B(w, d), BB(z,¢) %, BB(w,d), iff for

everyz' € BB(z,¢) andw® € BB(w, §): 2* < w® or z¢||w’.

Several examples of probable Pareto non-dominance carebérs€ig. 4:z' ¥,
22721 #u 23’21 b 24721 Fu 25322 #u Z4a23 Fu 24,
Whenz = f(z) € BB(z,¢),w = f(y) € BB(w,d) andBB(z,¢) #, BB(w,d),

we say that solution is probably non-dominated by solutign Only when the uncer-

14
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Slika 4: Approximated solutions presented in the objectpacs using bounding boxes

tainty is finally removed, e.g. the solutions are exacthyieated, we learn whether

dominategy or they are incomparable.

Definition 4.7 (probable incomparability). The bounding boBB(z, ) is probably
incomparable with the bounding bdB(w, ¢), BB(z,¢) ||, BB(w, ), iff for every
2* € BB(z,¢) andw’ € BB(w,d): 2¢ || w'.

Again, two solutions are probably incomparable when thessponding bounding
boxes are probably incomparable.

Finally, when none of the presented relations under uniogytapply, two solutions
are in an uncertain relation.

In Fig. 4,22 is probably incomparable witk?.

Definition 4.8 (uncertain relation). The bounding boBB(z, ) is in an uncertain re-
lation with the bounding boBB(w, §), BB(z, &) ~, BB(w,d), iff BB(z,¢) NBB(w, §) #
0.

In Fig. 4, 2° is in an uncertain relation with?, z3 andz*.
If solution 2 probably dominates solutiop then solutionz is also probably non-

dominated by solution:

15
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The probable Pareto dominance as well as the probable iraaiifity imply pro-
bable Pareto non-dominance.

If all the solutions are exactly evaluated, i.e., all thearresponding confidence
interval widths equal zero, the relations presented inghlssection directly translate
to the relations described in Subsection 4.1.

Using these relations under uncertainty, a multiobjectipmization algorithm
can often manage to compare two solutions without the neegactly evaluate them
first.

When in the comparison some uncertainty still remains, thdisas can be exactly
evaluated to eliminate any doubt. This procedure can dghitlie number of mistakes

made due to wrong assessments of the solutions.

5. The GP-DEMO Algorithm

The GP-DEMO algorithm for surrogate-model-based optitivrais, as the name
suggests, built upon the DEMO algorithm [1]. DEMO is an nabfective evolutio-
nary algorithm based on Differential Evolution (DE) [41]ike DE, DEMO is easy
to understand and implement, and very effective on numepicblems. The main
disadvantage of this algorithm is that it is not suited folvsm combinatorial pro-
blems because the candidate creation uses vector additibmaltiplication. DEMO
is a steady-state evolutionary algorithm that adds catgisialutions to the existing
population. Since they are immediately used for generatew solutions, the algori-
thm’s convergence is accelerated. DEMO is also effectiveniformly spreading the
solutions on the non-dominated front. This is done by remgthe solutions from the
extended population with the selection method taken fraNBGA-II algorithm [42].
GP-DEMO is very similar to DEMO. The difference is in that GEEMO approxima-
tes objective values and their confidence intervals with Gidets and uses relations
for comparing the solutions under uncertainty. After bespgroximated, solutions
need to be exactly evaluated when 1) this is required to flizena comparison (see

subsection 5.1) and 2) they are the best found solutionss(desection 5.2).

16



The GP-DEMO pseudocode is shown in Fig. 5.

GP-DEMO
1. Exactly evaluate the initial populatioh of random
individuals.
2. Build initial GP model.
3. While stopping criterion not met, do:
3.1. For each individual; (i =1, ..., popSize)
from P repeat:
(a) Create candidatefrom parentp;.
(b) Approximate the candidate with the GP model.
(c) Compare under uncertaintyandp; and keep
either the best one or both (see Subsection 5.1).
3.2. If the population has more thanpSize
individuals, use selection procedure under
uncertainty.
3.3. Update the GP model from the set of exactly
evaluated solutions.
3.4. Randomly enumerate the individualsin
4. Exactly evaluate all approximated solutions on the

front.

Slika 5: Outline of the GP-DEMO algorithm.

As already mentioned in Subsection 3.2, we decided to us8RIGP sparse appro-
ximation for GP modeling due to it having a much lower compatal complexity
than “full” GP modeling. Although the SPGP is a sparse apipnaxion method, upda-
ting the model is a relatively slow operation. Therefore,deeided not to update the
model after every new, exact evaluation becomes availéboleonly after every new
generation. Such an approach seems natural for evoluyi@igorithms and can be
interpreted as batch learning. It should be noted that axdgteevaluations are inclu-
ded in updating the model. This means that in the worst cheeyumber of solutions
evaluated exactly is the same as the population size, ahé ipest case, no solution is

evaluated exactly and as a result there is no need to updatedtiel. The number of
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exactly evaluated solutions depends on the quality of thdaindn general, it is true
that the better the model, the lower the number of exactljuated solutions. In some
cases, when the fithess function is very complex and the GRelnsoaboths it, even
though the approximation mean value is accurate enoughvatfi@nce is too big, so
solutions are evaluated exactly.

The update of the SPGP model is implemented as some kind afowing tech-
nigque. After every generation, thelast exactly evaluated solutions are used to update
the model, where is the window size. As we use the SPGP sparse approximation fo
GP modelingm data points (exactly evaluated solutions) are obtaineldeaadtive set.
Both parameters; andm, are design parameters. It should be noted that the active
set is calculated from scratch during every update, whichnaehat the active set of
the previous model is not used as the initial active set inntleelel update. Due to
the nature of the optimization process, we do not want to kleesolutions from the
whole decision space, but the solutions near the Paretmalftiont. Nevertheless, the
GP model’s hyperparameters are preserved, as their valei@®tsupposed to change
much with each generation/update, and therefore the mqathiaation converges
much more quickly.

The creation of the candidate solution from the parent theatiso is done in the
same way as in DEMO. The comparison of the candidate and tpgokitions and the
decision on the outcome are described in Subsection 5.1sdlketion process where
the number of solutions is reduced to the population sizéssadapted for surrogate-
model-based optimization with confidence intervals. Thiscpdure is described in

Subsection 5.2.

5.1. Comparing solutions under uncertainty

A comparison of the candidate and parent solutions in theDEMO algorithm
is based on the relations under uncertainty described isetion 4.2. There are six
possible situations that can happen when comparing caedidaith the vector of

confidence intervals and the parent with the vector of confidence intervals

1. If ¢||u p, both solutions are added to the population.
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In this case, solutionsandp are certainly incomparable. Even if both solutions
would be exactly evaluated and thus with confidence intemidths equal to
zero, they would still be incomparable and the algorithm Maiill add both
solutions to the population. Hence, no additional evaturetiare needed in this
case.

. If ¢ <y p, solutionc is added to the population and solutipis discarded.

Here the solutiomr is definitely better than the solutigntherefore no additional
evaluations are necessary as they would not change the dooaimelation.

. If p <y ¢, solutionp is added to the population and solutiois discarded.

This case is similar to the previous one.

. If ¢ £y p, the algorithm checks. If ¢ # 0, the algorithm exactly evaluatesand
compares the solutions again. elf= 0, the algorithm exactly evaluatesand
compares the solutions again.

In this case, solutiop is better in at least one objective and not worse in the
others. In order to determine if either the solutiotlominates solutiop or they
are incomparable, (at least) one solution needs to be gactluated. Because
¢ looks more promising, its confidence interval is checkedtsltvidth is diffe-
rent from zero, meaning that the solution is approximateel ailgorithm exactly
evaluates solutiom and then compares the solutions again. If the confidence
interval width is equal to zero, meaning thidas exactly evaluated, then, in order
to be able to compare the solutions, the algorithm exactyuawes solutionp
and compares the solutions again.

. If p ¥4 ¢, the algorithm checks. If 6 # 0, the algorithm exactly evaluates
and compares the solutions againd K 0, the algorithm exactly evaluatesand
compares the solutions again.

This case is similar to the previous one, except that theisolp is now more
promising.

. If ¢ ~y p, the algorithm checks. If € # 0, the algorithm exactly evaluatesind
compares the solutions again. elf= 0, the algorithm exactly evaluatgsand

compares the solutions again.
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In this case, the only way to see which solution is better iextactly evaluate
(at least) one solution. Because the candidate (offsphiag)the potential to be
better then the parent, the algorithm first checks if it isciyeevaluated. If it is

not, the algorithm exactly evaluates it. If it is, the alglon exactly evaluates the

parent and than compares the solutions again.

5.2. Selection under uncertainty

The function of the selection procedure in a multiobjectivelutionary algorithm
is to limit the size of the population and to uniformly sprehd solutions on the front.
The selection procedure in GP-DEMO is based on the seleptmredure proposed in
the NSGA-II algorithm. This selection procedure involvesdominated sorting and
ranking using the crowding distance metric. In nondomidaerting all the nondo-
minated individuals are allocated into the first front ane ttondominated sorting is
applied again to the remaining individuals. In this way, gusnce of fronts is ob-
tained, where the individuals from the preceding frontspaederred to those from the
subsequent fronts. The new population is filled in turn wité individuals from the
best fronts. If a front cannot fit into the population entire¢he individuals from this
front are further ranked according to the crowding distametric. Sorting based on
crowding distance prefers individuals from less crowdegiams of the objective space
to ensure a good spread of solutions.

The problem that can occur when performing nondominatetingowith appro-
ximated solutions is that some solutions can wrongly doteimgher solutions. For
this reason those solutions are then dominated and can ¢erdisl. As a result the
process of finding the best nondominated solutions is mislem prevent this from
happening, the original selection procedure is modifiedhabthe solutions that are ei-
ther certainly or possibly (because of confidence intej\aighe first front are exactly
evaluated. With this approach we ensure that the front oflaorinated solutions is al-
ways accurate, there are no deficiencies in the optimizatiocess, and the possibility
of getting stuck in the local optima because of inaccurapg@pmations is reduced.

To calculate the crowding distance metric, the approxichatgective values are

used. In this step, the algorithm does not exactly evaluayenaore approximated
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solutions, to spare as many exact evaluations as possible.

6. Numerical Evaluation

This section describes the test problems that were usedsistidy, presents the
settings used for testing, shows the results of the opttimizaand compares the re-
sults gained with different algorithms. The section codekiwith the discussion and

explanation of the results.

6.1. Test problems

The test problems used in our study are all minimization lemls and can be
divided into two groups. The first group consists of knowndbenark problems and
the second group consists of two real-world problems. Tinetm@ark problems were
divided into easier and more complex problems to test alhHpects of the algorithms.
The first of the two real-world problems is the optimizatidm@ontinuous steel casting
process and the second one is the problem of finding the beslation between a

simulated and a measured electrocardiogram (ECG).

6.1.1. Benchmark problems

The benchmark problems are further divided into two subgsouThe first su-
bgroup consists of three problems from [43] called BNH, OS¥d &RN. All the
problems are constrained and have two objectives. These firoblems are relati-
vely simple and are used to measure how many exact evalsatambe saved with
surrogate-model-based algorithms in comparison to DEMO.

The second subgroup consists of the WFG test problems irtealdin [44]. The
WEFG toolkit is used to construct a suite of problems that mtesia thorough test for
optimizers. The nine WFG problems, WFG1-WFG9, are formulatedich a manner
that each poses a different type of challenge to the optisizEhe WFG toolkit tests
the abilities of surrogate-model-based algorithms to fioldtfons comparable to the

ones gained with DEMO on simple as well as complex problems.
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Slika 6: Scheme of the steel casting process

6.1.2. The continuous steel casting problem

The continuous casting of steel is a very complex metalbaigirocess where mol-
ten steel is cooled and shaped into semi-manufactures inédesmensions. The main
components of the casting system (schematically showngn &) are the ladle, tun-
dish, mold and cooling subsystems [45].

The process of steel casting starts with molten steel besngeg into a ladle from
an electric furnace and then led through the tundish thatasca buffer for the liquid
metal, which is then drained into an open-base copper mdid.\ilater-cooling inside
the mold cools the mold and the hot steel starts solidifymgantact with it. The
water flowing through the channels built into the walls of theld cools the steel. The
channels represent the primary cooling subsystem.

Molten steel with a thin solid shell, now called the stranxifsethe base of the
mold into a spray chamber where it is immediately supporteddsely spaced water-
cooled rollers. The strand is sprayed with water in the vireaid spray cooling areas

in order to increase the rate of solidification. Togetheg, wheath and spray cooling
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areas represent the secondary cooling subsystem.

When the steel exits the casting system, it is cut into bilkéthe desired length.
The length of the liquid core in the strand is called the nhatgical length. The metal-
lurgical length, the thickness of the solid shell at the metd, and the strand surface
temperature at the unbending point have a large effect oguality of the cast steel.

The optimization problem involves input variables (pracparameters), output va-
riables, and the desired output values, determined by domaierts. The task is to
find the input variable settings resulting in values of thépativariables as close as
possible to the desired values. Based on empirical knowlé@dghe steel production
domain, such settings result in high-quality steel.

Since the process of steel casting is expensive, time canguand could also be
dangerous, it is necessary to have a model to make the optionizof the parameters
of the steel casting possible. To model the casting, the rioaienodel of steel casting
[46] was used. The four input variables of this numerical eidtat are being opti-
mized are the casting speed, the mold outlet coolant teterahe wreath system
coolant flow, and the spray system coolant flow. The lower &edupper bounds for
those variables were also determined by experts.

Given the input parameters, the simulator computes the thméput variables that
are essential for the quality of cast steel. The output btegaare the metallurgical
length, the shell thickness and the surface temperatureeatinbending point. As
an optimization criterion, the difference between the attmriable produced by the
numerical simulator and its desired value is consideredisTthe goal is to find such
values of the input variables that all the criteria would b® @s close to 0 as possible.

The time needed to exactly evaluate one simulation of thed stesting process is

approximately 2 minutes on a 3.4-GHz Intel Core i7 computign & GB RAM.

6.1.3. The ECG problem

The second real-world test problem is the problem of findirggtiest correlation
between a simulated and a measured ECG. An ECG is a diaganstimonitoring tool
that records heart activity by measuring, on the body sarfttwe electrical currents

originating in the heart. Modeling the electrical activitf a human heart provides
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useful insight into the ECG generating mechanisms thatrcdéurn be used to further
the understanding of the ECG and improve its diagnosticfitene

For this problem the ECG simulator presented in [47] was uskdte simulator
uses a simplified heart cell model consisting of the actioemtal (AP), a function
which defines the heart cells’ electrical activity. Sincefaeus only on the difference
between the T waves of the ECG traces, the full resolution @mdplexity of this
simulator is not needed. Thus, a coarse model consistinggbf 8mes fewer heart
cells than the original model was used, enabling a fasteulaiion.

The input parameters (variables of the optimization pnoblef the simulator con-
sist of two groups of four parameters. Every group definesAfhef the heart's cell
layer.

This optimization problem consists of two objectives. Foerg objective, the
objective function first calculates the Pearson corretatioefficient [48] between the
simulated ECG and the ECG measured on one of the two locatiioispon the body.
Then, in order to get a minimization problem, the functiotcakates the objective

value (f) by subtracting the Pearson correlation coefficigh®'(C) from 1:
f=0-PCC). (6)

When the simulated and the measured ECG are fully correldted,Pearson correla-
tion coefficient is equal to 1 and the objective value is etpal.

Solving this optimization problem consists of finding thghti combination of va-
riable values for setting the APs of the simulated heart @hguway that the simulated
ECG is as close as possible to the measured ECG.

The time needed to exactly evaluate one solution of the E@BI@m is approxi-

mately 15 seconds on a 3.4-GHz Intel Core i7 computer with 8RB®].

6.2. Experimental setup

For the purpose of determining the quality of the resultsioied with the GP-
DEMO algorithm, a comparison was made with the DEMO algarithnd with the
surrogate-model-based algorithm called Generationalufen Control (GEC). We
implemented GEC based on the algorithm NSGA-II-ANN from][1%he basic idea
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of this algorithm is that during the optimization processsame generations all the
solutions are exactly evaluated, while in others, all tHatgmns are approximated with
a surrogate model. In their paper, the authors describerdift versions of the NSGA-
II-ANN algorithm. For the purpose of this research we chbseversion of the NSGA-

[I-ANN algorithm that the authors claimed to be better thaineo versions. In this

version the number of generations for exact evaluationbriset followed by seven

generations of approximated solutions. This combinatiotinén repeated during the
whole optimization process.

To be able to perform a fair comparison of the algorithms,esomodifications had
to be made to the NSGA-II-ANN algorithm, and this modifiedalthm is called GEC.
In the GEC algorithm, GP modeling was used for the modelisteisd of the artificial
neural network (ANN), because the use of a different suteogaodel would influ-
ence the results. Instead of the NSGA-II algorithm, the DEM@brithm was used to
ensure that the creation and combination of candidateisokitlid not affect the re-
sults. At the end of the optimization process, in order tcegggmparable hypervolume
and nondominated solutions, all the approximated nondatihsolutions get exactly
evaluated. This ensures that the front of nondominatedienhkiis accurate and not
approximated.

The algorithm parameter values used for the testing weresdhge for all three

algorithms. They were set as follows:

e maximum number of solution evaluations: 10000,

population size: 100,

weight: 0.5,

crossover probability: 0.3,

selection method: as in NSGA-II.

The maximum number of solution evaluations for the contusisteel casting pro-
blem was 3000 instead of 10000 in order to save time and beedtes 3000 solution

evaluations the hypervolume did not increase any more.
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The GP-DEMO and the GEC algorithms used GP modeling to cteatsurrogate
models. The modeling technique and the parameter valudsnese the same in both
algorithms (see Section 3). The width of the confidence walewas equal to two
standard deviations. This means that the probability titeekactly evaluated solution
is within the confidence interval of the approximated solufis 95%. The sizes of the
active set and the window set were determined after tryiffgréint settings and were
chosen as the best compromise between the time needed datheiimodel and the

precision of this model for the approximation.The paramed¢ues are following:
e active set size: 350,
e window set size: 500.

The window set is relatively small. This ensures that duthrggoptimization pro-
cess, when approaching the optimum, the surrogate modebumégexactly evaluated
solutions close to the optimum. This locality enables theogiate model to be more
precise, thus making the confidence interval narrower dutie optimization.

The experiments were run 30 times for each of the benchmanidems and 10
times for each of the real-world problems because of sinn#aults and in order to

save time.

6.3. Results
For every problem and for every algorithm four different si@@s were obtained:
e number of exact evaluations performed during the optinomgtrocess,
e final hypervolume,
e duration of the optimization process,
e number of nondominated solutions on the final front.

The results averaged over all the runs are presented insTabg
For every problem the final fronts of all the tested algorishane shown in Fig.
7-20.
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Tabela 1: Results on BNH, OSY and SRN test problems

Stevilo eksaktno Optimizacijski | Nedominirane

Problem| Algoritem | ovrednotenih r&itev | Hipervolumen Cas resitve
DEMO 10000 0.6880 00:00:05 100
BNH GP-DEMO 401 0.6880 00:05:47 100
GEC 3080 0.6878 00:14:18 100
DEMO 10000 0.9643 00:00:05 100
oSy GP-DEMO 1485 0.9646 00:24:36 100
GEC 3078 0.9643 00:23:08 99
DEMO 10000 0.9547 00:00:05 100
SRN GP-DEMO 267 0.9550 00:02:49 100
GEC 3091 0.9553 00:14:53 100

6.4. Discussion

The evaluation of the GP-DEMO algorithm was done by comgaitirwith two

other multiobjective evolutionary algorithms. The firseas DEMO, which is known

to be very effective and was used for comparing the qualityhefresults. The second

one is GEC, a surrogate-model-based multiobjective eiemlaty algorithm that was

used to compare both the quality of the results and the nuaibexactly evaluated

solutions performed during the optimization process.

The first set of benchmark optimization problems that wagl dee the testing

(BNH, OSY and SRN) is composed of relatively simple optinticza problems. Beca-

use of this simplicity, the GP modeling technique is abler&ate very precise models

of their objective functions. Therefore, the approximasetltions have very narrow

confidence intervals and are rarely required to be exactjuated. The comparison

of the solutions with very narrow confidence intervals canally be done without

exactly evaluating them. This results in the GP-DEMO and Gje@ing almost the

same hypervolume as DEMO, but with fewer exactly evaluatédtisns. On these
problems, GP-DEMO exactly evaluated only between 3 % (BNH 8RN) and 15
% (OSY) of all the solution evaluations. The particularitytbe GEC algorithm is

that the number of exact evaluations performed during thienigation process differs
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Tabela 2: Results on WFG test problems

Stevilo eksaktno Optimizacijski | Nedominirane

Problem | Algoritem | ovrednotenih r&itev | Hipervolumen cas resitve
DEMO 10000 0.9376 00:00:10 72
WFG1 GP-DEMO 8291 0.8965 02:42:01 51
GEC 3100 0.7512 00:38:08 11
DEMO 10000 0.9643 00:00:09 100
WFG2 GP-DEMO 3991 0.9640 02:22:54 100
GEC 3003 0.9605 00:38:11 44
DEMO 10000 0.9594 00:00:10 100
WFG3 | GP-DEMO 4864 0.9594 02:21:26 100
GEC 3023 0.9579 00:37:26 85
DEMO 10000 0.9340 00:00:10 100
WFG4 GP-DEMO 3508 0.9288 02:33:52 94
GEC 3025 0.9248 00:37:13 25
DEMO 10000 0.9154 00:00:09 100
WFG5 GP-DEMO 6710 0.9143 02:10:04 100
GEC 3083 0.9135 00:38:56 73
DEMO 10000 0.9365 00:00:09 100
WFG6 GP-DEMO 2003 0.9216 02:24:44 71
GEC 3019 0.9309 00:37:33 70
DEMO 10000 0.9368 00:00:09 100
WFG7 | GP-DEMO 7897 0.9368 02:52:01 100
GEC 3080 0.9155 00:38:42 23
DEMO 10000 0.8653 00:00:10 98
WFGS8 GP-DEMO 3273 0.8649 02:22:14 89
GEC 3022 0.8558 00:36:33 57
DEMO 10000 0.9207 00:00:09 100
WFG9 GP-DEMO 8988 0.9204 02:42:01 100
GEC 3077 0.8911 00:35:18 13
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Tabela 3: Results on real-world test problems

Stevilo eksaktno Optimizacijski | Nedominirane

Problem Algoritem | ovrednotenih réitev | Hipervolumen Cas resitve
DEMO 3000 0.5078 112:22:37 100
Kontinuirno ulivanje | GP-DEMO 950 0.5078 36:20:05 100
GEC 1090 0.5074 39:28:39 97
DEMO 10000 0.9987 39:21:19 100
EKG GP-DEMO 8135 0.9986 36:35:18 100
GEC 3100 0.9937 13:16:04 22

very little from one problem to another. Since in three oueof generations the newly
created solutions are exactly evaluated, in our case, hdtimaximum number of eva-
luated solutions equal to 10000, the number of exactly eatlisolutions is at least
3000. Additional exact evaluations are performed at theoétite optimization process
where all the approximated solutions are exactly evalud@edause of this strategy the
number of exact evaluations performed with GEC varies betvd900 and 3100 on all
the problems, which is a little more than 30 % of all the eviddasolutions.

The WFG test problems were the second set of benchmark prebléhese pro-
blems are known to be hard optimization problems designdétidmughly test any
algorithm. Because of their complexity, the WFG objectivadiions are very diffi-
cult to model. This results in two possible problems. The fir®blem is that the
confidence intervals of the approximated solutions are milign on the previous set
of test problems. Therefore, many solutions need to be lgxacaluated and the re-
duction in the number of exactly evaluated solutions way between 10 % and 80
%. Secondly, the GP model could be in some cases overconfilertat are actu-
ally wrongly approximated predictions. Such cases occienthe modeled function
has sudden changes in values and the GP model identifiesdhasges as outliers
or noise. As the GP model, due to the probabilistic natureaths them, the appro-
ximation is wrong. When such changes are relatively largepesed to the “usual”
changes, the variance of the approximation is small anctbier the exact value is

not inside the confidence interval. In order to prevent swhstfrom falling out of the
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confidence interval, we could make the confidence intervdewie.g., three standard
deviations, but since this happens rarely and the finalteat still good, we did not
change the width of the confidence interval. This case oedumainly on the WFG1
problem and the hypervolume obtained with GP-DEMO was #lighorse compared
to DEMO (Fig. 10). The hypervolume values on the other WFG lgmols are very
similar. Although the solutions get closer together dutimgoptimization, the number
of exact evaluations does not increase. The approximatjensiore precise, resulting
in narrower confidence intervals, which rarely overlap.

The results gained with GEC on the WFG test problems are thetwaralmost
all the problems. The final fronts have fewer solutions ameelchypervolumes. Beca-
use the GEC algorithm does not use the confidence interval edraparing solutions,
the mistakes where an approximated solution wrongly dotaithe other solutions
occur more often. Because the surrogate models for the WR®ra&slems are not
very accurate, the approximation errors are larger and fnegeient. On all the WFG
test problems, just before the end of the optimization mecthe final fronts gained
with GEC consisted of 100 solutions and their hypervolumesvecompetitive. After
exactly evaluating these solutions, the results got wolsereason why algorithms
like GEC face this dificulty is that early in the optimizatiprocess a wrongly approxi-
mated solution appears to be very good. This solution thevemits other high-quality
solutions from staying in the population because it donéigdahem. At the end of
the optimization process this solution is exactly evaldate a low-quality solution,
lowering the hypervolume since a part of the decision spateweakly covered.

The analysis of the results from the real-world test prolsishow similar findings.
The difference with real-world problems is that the wholé¢imjzation process takes
longer because every exact solution evaluation is computdly expensive.

The first real-world problem is the problem of optimizing thentinuous casting
process in order to get the best possible quality of cast. sidee GP modeling te-
chnigue is able to create an accurate surrogate model ofbtiténaous steel casting
process so the hypervolume and the size of the final front aelenest identical for all
three algorithms. The GP-DEMO algorithm exactly evalugtest a little over 30 %

of all the solution evaluations. This percentage would bendvigher if the stopping
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Slika 7: Fronts of non-dominated solutions found by DEMO, BIEMO and GEC on the BNH problem
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Slika 8: Fronts of non-dominated solutions found by DEMO, BIEMO and GEC on the OSY problem
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Slika 9: Fronts of non-dominated solutions found by DEMO, BIEMO and GEC on the SRN problem
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Slika 10: Fronts of non-dominated solutions found by DEMO;B#EMO and GEC on the WFG1 problem
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Slika 11: Fronts of non-dominated solutions found by DEMO;@EMO and GEC on the WFG2 problem
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Slika 12: Fronts of non-dominated solutions found by DEMO;B#EMO and GEC on the WFG3 problem
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Slika 13: Fronts of non-dominated solutions found by DEMO;@EMO and GEC on the WFG4 problem
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Slika 14: Fronts of non-dominated solutions found by DEMO;B#EMO and GEC on the WFG5 problem
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Slika 16: Fronts of non-dominated solutions found by DEMO;B#EMO and GEC on the WFG7 problem
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Slika 18: Fronts of non-dominated solutions found by DEMO;B#EMO and GEC on the WFG9 problem
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Slika 19: Fronts of non-dominated solutions found by DEMO;BFEMO and GEC on the ECG problem
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Slika 20: Fronts of non-dominated solutions found by DEMO;[B#EMO and GEC on the continuous steel

casting problem
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criterion would allow more than 3000 solution evaluatiobecause at the beginning
the surrogate model is not as accurate as it becomes aftatagod/NVith more precise
surrogate models, the confidence intervals become nariakiess exact evaluations
are needed. Because one exact evaluation takes more thanimwtes, the time nee-
ded for optimization with GP-DEMO on this problem is threg/sighorter than with
DEMO.

The analysis of the results on the ECG problem shows simigaorithm beha-
vior as was seen on the WFG test problems. The surrogate mmrdeked during the
optimization process return quite narrow confidence itistvHowever, because the
solutions on the front are very close to zero, and also verygecto one another, this
confidence interval still turns out to be relatively wide.i§then results in GP-DEMO
achieving a small saving in the number of exactly evaluatdgtions, but still mana-
ging to get results that are as good as the ones gained witbEMO algorithm. The
GEC algorithm has difficulties once again in reaching theesgoality of results, and
the number of nondominated solutions on the final front islsma

If we compare the times needed for optimization we can seeféhahe bench-
mark problems, where one exact evaluation is almost indEO finds final fronts
in a few seconds. With GP-DEMO and GEC the optimization tirweslonger beca-
use of the time spent building the surrogate models. The tieeeled for updating the
surrogate models during the optimization process dependhenumber of exactly
evaluated solutions that are used for training, the conitylex the objective function,
and also of the number of objectives, because for every tgeg separate surrogate
model is created. Since the exact evaluation of 10000 solsiton benchmark opti-
mization problems takes just a few seconds, the time neexleddate the surrogate
models is approximately the same as the optimization time {ables 1 and 2). If the
solution evaluations are very fast, the DEMO algorithm &s ltiest, but on real-world
problems, where exact solution evaluations take more @RePEMO becomes more
suitable because the optimization times are shorter andjubéty of the results is
comparable to the quality obtained with DEMO. In comparigeth the other two al-
gorithms, GEC sometimes needs fewer exact function evahstbut its disadvantage

is that the quality of the results is worse (see Tables 2 and 3)
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Tabela 4: Border time (in seconds) for one exact solutioruatain where optimization time for GP-DEMO
and DEMO take the same amount of time.

BNH | OSY | SRN | WFG1 | WFG2 | WFG3 | WFG4 | WFG5 | WFG6 | WFG7 | WFG8 | WFG9

0.04 0.2 0.02 5.7 1.4 1.6 1.4 3.4 11 4.9 1.3 9.5

For the benchmark problems we calculated how long one eradian evaluation
should take, so that the optimization times of GP-DEMO and/QEwvould be equal.
These border times are shown in Table 4. If the time neededrferexact solution
evaluation is known, this helps us choose which algorithms® in order to get good
results as fast as possible. On the test problems that cancbeately modeled the
border times are very short and on problems with less acestatogate models these
times are slightly longer. These times could be further cedwby optimizing the GP
modeling procedure. For example, the update of the suragatiels could be made
parallel for every objective and also the update of the GPeatsodould perhaps be

performed less often.

7. Conclusion

In this paper, the newly developed surrogate-model-basétiaijective evolutio-
nary algorithm GP-DEMO is presented. GP-DEMO is based omlgparithm DEMO
using the GP model as a surrogate model for approximatingisok. To prevent wron-
gly performed comparisons of the solutions due to inaceuspproximated solutions,
new relations for comparing solutions under uncertaintguggested. These relati-
ons, also considering the confidence intervals of the ajpiion, are used for every
comparison during the optimization process instead of HretB dominance relations.
This prevents cases where an inaccurately approximatetiaowrongly dominates
a better solution, which results in slowing the optimizatfrocess or even in not fin-
ding the best solutions. The comparison of the candidategareht solutions and the
selection process for maintaining the population size awdified in such a way that
we determine which solutions should be exactly evaluateditdmize the possibility
of a wrongly performed comparison and still find optimal leswith as few exact

evaluations as possible.
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We tested GP-DEMO on 12 different benchmark and two comjautalily expen-
sive real-world problems. To assess the quality of the tesel solved those problems
with another surrogate-model-based multiobjective eiahary algorithm called GEC
and with DEMO. The assessment was based on the number ofyexeaiuated soluti-
ons, hypervolume value, optimization time and the numbeooidominated solutions
on the final front.

Comparing the hypervolume and the highest number on nonded solutions on
the final fronts, DEMO, as expected, obtained the best idulit the number of exac-
tly evaluated solutions was a maximum as there is no solafgmoximations. On the
other hand, the hypervolume values and the number of sokitia the final fronts ob-
tained by GP-DEMO were almost identical to those obtaine®BMO on almost all
the problems, but the number of exactly evaluated soluti@nrmed by GP-DEMO
was much lower, between 4% and 80% of all the exact evalugtibepending on the
problem. In comparison to GP-DEMO and DEMO, the GEC algaritibtained simi-
lar hypervolume values and the number of solutions on théffioiats on less complex
problems, but worse on more complex problems due to theqarslyi described pro-
blem of wrongly performed comparisons. As GEC has fixed diarucontrol, the
number of exactly evaluated solutions was around 30% ohalkvaluations.

A comparison of the optimization time shows that for benchiopsoblems DEMO
is the most suitable of the compared algorithms, but it issuitable for computati-
onally expensive real-world problems. In contrast, botirayate-model-based evo-
lutionary multiobjective algorithms are more suitable émmputationally expensive
real-world problems, because the time needed for trainmmugpdating the surrogate
models on benchmark problems takes up most of the whole @atiion time.

As the quality of the results obtained by GP-DEMO and DEMO wexy similar,
we calculated the border time of one exact solution evainatif the exact solution
evaluation is longer than the border time, then the optitiindime of DEMO is longer
than the optimization time of GP-DEMO. Therefore, we cantsay in the case of a
multiobjective optimization problem where one solutioalenation takes more than the
border time and the quality of the results is important, GEM®D should be used.

Our future work will focus on improving the GP-DEMO algorith The first pos-
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sibility is to speed up the optimization time by updatingth# surrogate models after
each generation in parallel. Later on we will work on GP modgin order to speed
up the update process and achieve approximations moresdelgut=inally, instead of
using a single model the algorithm will be extended to exped surrogate models, a
global one, covering the whole space, and a local one, ctratigry only on the current

best solutions, but in greater detail.
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