
COMPARING RANDOM FOREST AND GAUSSIAN PROCESS
MODELING IN THE GP-DEMO ALGORITHM

Miha Mlakar, Tea Tušar, Bogdan Filipič
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ABSTRACT

In surrogate-model-based optimization, the selection of
an appropriate surrogate model is very important. If so-
lution approximations returned by a surrogate model are
accurate and with narrow confidence intervals, an algo-
rithm using this surrogate model needs less exact solu-
tion evaluations to obtain results comparable to an algo-
rithm without surrogate models. In this paper we com-
pare two well known modeling techniques, random forest
(RF) and Gaussian process (GP) modeling. The compar-
ison includes the approximation accuracy and confidence
in the approximations (expressed as the confidence inter-
val width). The results show that GP outperforms RF and
that it is more suitable for use in a surrogate-model-based
multiobjective evolutionary algorithm.

1 INTRODUCTION

One of the most effective ways to solve problems with multi-
ple objectives is to use multiobjective evolutionary algorithms
(MOEAs). The MOEAs draw inspiration from optimization
processes occuring in nature and perform many solution eval-
uations to find high-quality solutions. Due to the high number
of solution evaluations the MOEAs are not very suitable for
computationally expensive optimization problems where ex-
act solution evaluation takes a lot of time. In order to obtain
the results of such problem more quickly, we usually use sur-
rogate models to approximate the objective functions of the
problem.

But due to inaccurate approximations, the solution com-
parisons can be incorrect, which can result in very good so-
lutions being discarded. In order to minimize the impact of
incorrect comparisons, we defined the relations under uncer-
tainty ([5]) for comparing approximated solutions presented
with an approximated value and a confidence interval. By
including the confidence interval in the comparison we were
able to consider this additional information and minimize the
number of incorrect comparisons.

We used these relations under uncertainty in the algo-
rithm called Differential Evolution for Multiobjective Opti-
mization based on Gaussian Process modeling (GP-DEMO)
[4]. We discovered that the quality of the gained result de-
pends greatly on the surrogate model. If the surrogate model

is accurate, GP-DEMO finds high-quality results with a low
number of exact solution evaluations, while if it is not, GP-
DEMO needs more exact solution evaluations to achieve sim-
ilar results.

Since the accuracy of the surrogate model in surrogate-
model-based optimization is crucial, we decided to apply two
different modeling techniques and compare their approxima-
tions to determine which one is more suitable for use in a
surrogate-model-based algorithm. In addition to Gaussian
process (GP) modeling that is used in GP-DEMO, we used
random forest (RF) for comparison. The reason for choos-
ing RF was the fact that the methodology is well-known and
that the solutions approximated with this method in addition
to approximated values return also confidence intervals.

The structure of this paper is as follows. In Section 2, we
present how the comparison of RF and GP modeling tech-
niques was carried out. In Section 3, we discus the results
gained with both techniques, compare them and determine
which technique performs better. Section 4 concludes the pa-
per with an overview of the work done.

2 COMPARISON OF RF AND GP SURROGATE
MODELS

In this section we compare random forest and Gaussian pro-
cess modeling techniques used for solution approximations.
The aim of the comparison is to determine which of the two
techniques is more suitable for use in surrogate-model-based
optimization.

To test the two techniques, we used relations under uncer-
tainty to compare their approximated solutions. If two so-
lution approximations had overlapping confidence intervals,
we, in order to determine their relation, exactly evaluated one
solution and compared the solutions again. Together with the
number of these additional exact evaluations, we measured
also the number of incorrect solution comparisons and the
width of the confidence intervals.

In addition to using relations under uncertainty, we also
compared the approximated solutions with Pareto dominance
relations and measured the number of incorrect comparisons.
With Pareto dominance relations the confidence intervals are
not included in the comparisons, so in general, the number of
incorrect comparisons hints at the accuracy of the approxima-
tions.
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Table 1: Comparison of the relations under uncertainty and Pareto dominance relations for GP modeling on the Poloni problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

1,515 3,635,805 92 26.25
30 682 3,152,124 80 15.41
50 138 1,218,337 31 1.29

100 65 672,384 17 0.012
200 13 549,380 14 0.002

Pareto
dominance
relations

20

3,940,200

367,684 / / 26.25
30 159,945 / / 15.41
50 22,032 / / 1.29

100 2,309 / / 0.012
200 1,219 / / 0.002

Table 2: Comparison of the relations under uncertainty and Pareto dominance relations for GP modeling on the OSY problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

74,181 2,289,682 58 42.81
30 21,861 1,934,212 49 25.98
50 19,342 1,426,775 36 25.05

100 144 712,298 18 0.07
200 152 271,821 7 0.03

Pareto
dominance
relations

20

3,940,200

336,049 / / 42.81
30 136,357 / / 25.98
50 49,790 / / 25.05

100 1,736 / / 0.07
200 1,453 / / 0.03

Table 3: Comparison of the relations under uncertainty and Pareto dominance relations for the GP modeling on the SRN problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

7,407 2,703,783 69 50.03
30 16 2,338,535 59 0.074
50 2 749,258 19 0.099

100 3 359,952 9 0.022
200 11 183,625 5 0.009

Pareto
dominance
relations

20

3,940,200

188,401 / / 50.03
30 161 / / 0.074
50 543 / / 0.099

100 645 / / 0.022
200 648 / / 0.009

Table 4: Comparison of the relations under uncertainty and Pareto dominance relations for RF modeling on the Poloni problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

22,497 3,906,474 99 32.89
30 5,206 3,937,230 99 31.83
50 2,180 3,935,723 99 28.42

100 125 3,930,277 99 23.97
200 4 3,909,386 99 19.76

1,000 2 3,619,402 92 12.11

Pareto
dominance
relations

20

3,940,200

1,021,750 / / 32.89
30 965,491 / / 31.83
50 1,043,216 / / 28.42

100 894,889 / / 23.97
200 733,044 / / 19.76

1,000 379,928 / / 12.11
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Table 5: Comparison of the relations under uncertainty and Pareto dominance relations for RF modeling on the OSY problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

1 2,663,597 68 842.41
30 0 2,663,597 68 789.04
50 0 2,663,597 68 767.92

100 0 2,663,597 68 720.44
200 0 2,663,597 68 677.79

1,000 0 2,663,597 68 548.19

Pareto
dominance
relations

20

3,940,200

885,416 / / 842.41
30 770,439 / / 789.04
50 810,251 / / 767.92

100 683,578 / / 720.44
200 661,919 / / 677.79

1,000 555,983 / / 548.19

Table 6: Comparison of the relations under uncertainty and Pareto dominance relations for the RF modeling on the SRN problem

Relation Solutions used for Number of Incorrect Number of comparisons with Proportion of confidence Confidence
type surrogate model comparisons comparisons confidence interval reductions interval reductions [%] interval width

Relations
under
uncertainty

20

3,940,200

18 3,384,351 86 359.51
30 0 3,385,285 86 350.55
50 0 3,385,242 86 308.94

100 0 3,384,910 86 266.55
200 0 3,378,456 86 224.77

1,000 0 3,133,626 79 139.89

Pareto
dominance
relations

20

3,940,200

387,854 / / 359.51
30 425,691 / / 350.55
50 365,606 / / 308.94

100 288,611 / / 266.55
200 216,634 / / 224.77

1,000 136,656 / / 139.89

The solutions selected for testing were not generated ran-
domly, but rather produced by the well-known NSGA-II al-
gorithm [3]. This ensured that the solution comparisons were
similar to the comparisons performed in evolutionary multi-
objective algorithms and thus provided relevant results.

In every generation NSGA-II creates a new set of solu-
tions, adds them to the current ones and then performs selec-
tion on the union to identify the most promising ones. The
selection procedure includes comparing every solution with
all other solutions to determine its dominance status. These
were the comparisons used in our study.

The experiments were performed on three benchmark mul-
tiobjective optimization problems. One is the Poloni opti-
mization problem [6] and two are from [2], called OSY and
SRN. All of them are two-objective problems.

For testing purposes we used GP modeling as proposed by
[7] and RF modeling as proposed in [1]. For the confidence
interval width of the approximation we used two standard de-
viations (2σ), which corresponds to about 95% of the normal
distribution of the approximations. The number of trees used
for building RF was 10,000 and the minimum number of ele-
ments in the leaves was set to 1.

To test the correlation between the surrogate model accu-
racy and the incorrect comparisons, different models of in-
creasing accuracy were built—each on larger number of so-

lutions. Since building an RF surrogate model is faster than
building a GP surrogate model, we, in addition to building
surrogate models from 20, 30, 50, 100 and 200 exactly eval-
uated solutions, also built an RF surrogate model from 1000
exactly evaluated solutions. We tested how much the larger
RF surrogate model built from 1000 exactly evaluated solu-
tions increases the accuracy of the approximations.

The NSGA-II parameter values used in the experiments
were the same for both modeling techniques and for all three
problems. They were set as follows:

• population size: 100,

• number of generations: 100,

• number of runs: 30.

The results averaged over 30 runs are presented in Tables
1–3 (for GP modeling) and in Tables 4–6 (for RF modeling).

3 DISCUSSION

The results gained with both modeling techniques show that,
irrespectively of the accuracy of a surrogate model, using rela-
tions under uncertainty reduces the number of incorrect com-
parisons.
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The comparison of the results gained with RF and GP re-
veals certain differences between the techniques. The main
difference is in the width of the confidence intervals. RF sur-
rogate models produce wider confidence intervals. Conse-
quently, the number of comparisons with confidence interval
reductions for RF is much higher than for GP.

In addition to yielding wider confidence intervals, the RF
surrogate models are also less accurate. Comparing the num-
ber of incorrect comparisons performed with Pareto domi-
nance relations where the confidence intervals are not con-
sidered, we can see that the number of incorrect comparisons
is higher with the RF surrogate models.

Another difference is in the correlation between the num-
ber of solutions used for building the surrogate model and the
accuracy of the surrogate model. By increasing the number
of solutions used, the RF surrogate models do not improve
as quickly as the GP models. Even in the cases where 1000
exactly evaluated solutions were used for building the RF sur-
rogate models the confidence interval widths were not greatly
reduced and the intervals were still much wider than the con-
fidence intervals gained with GP models built from 200 solu-
tions.

Looking at the number of incorrect comparisons, we can
see that by using relations under uncertainty with RF the re-
sults are slightly better than with GP. The reason for that is in
the fact, that the approximations with RF have relatively wide
confidence intervals which results in high number of confi-
dence interval reductions. Therefore, most solutions have to
be exactly evaluated in order to perform the comparisons. So
the reason for a lower number of incorrect comparisons is not
the higher quality of the surrogate models, but in the fact that
more solutions are exactly evaluated and are therefore with-
out uncertainty. Since in surrogate-model-based optimization
exactly evaluated solutions are typically computationally ex-
pensive, a modeling technique that exactly evaluates most of
the solutions is not very useful.

4 CONCLUSION

In this paper we compared random forest and Gaussian pro-
cess modeling techniques in the context of surrogate-model-

based multiobjective optimization. We compared their ap-
proximation accuracy and width of the confidence intervals.

The results show that surrogate models built with GP mod-
eling produce more accurate approximations with narrower
confidence intervals. Due to narrower confidence intervals
the comparisons of solutions approximated with GP model-
ing require less additional exact solution evaluations. As a
result, we can conclude that GP modeling is more appropriate
for use in a surrogate-model-based algorithm than RF.
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tions under uncertainty in multiobjective optimization.
Mathematical Problems in Engineering, 2014, doi:
10.1155/2014/817964.

[6] C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda. Hy-
bridization of a multi-objective genetic algorithm, a neu-
ral network and a classical optimizer for a complex design
problem in fluid dynamics. Computer Methods in Applied
Mechanics and Engineering, 186(2):403–420, 2000.

[7] C. E. Rasmussen and C. Williams. Gaussian Processes
for Machine Learning. MIT Press, Cambridge, MA,
2006.

69




