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ABSTRACT
�e relation between diversity and genotype to phenotype map-
ping has been the focus of several studies. In those Evolutionary
Algorithms (EAs) where the genotype is a sequence of symbols, the
contribution of each of those symbols in determining the pheno-
type may vary greatly, possibly being null. In the la�er case, the
unused portions of the genotype may host a large amount of the
population diversity. However, reasoning on coarse-grained mea-
sures makes it hard to validate such a claim and, more in general,
to gain insights into the interactions between genotype-phenotype
mapping and diversity. In this paper, we propose a novel visual-
ization which summarizes in a single, compact heat map (the DU
map), three kinds of information: (a) how diverse are the genotypes
in the population at the level of single symbols; (b) if and to what
degree each individual symbol in the genotype contributes to the
phenotype; (c) how the two previous measures vary during the
evolution. We experimentally verify the usefulness of the DU map
w.r.t. its primary goal and, more broadly, when used to analyze
di�erent EA design options. We apply it to Grammatical Evolution
(GE) as it constitutes an ideal testbed for the DU map, due to the
availability of di�erent mapping functions.
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1 INTRODUCTION
Many evolutionary algorithms (EAs) are based on a twofold repre-
sentation of individuals, which are described by means of a geno-
type and a phenotype. In those algorithms, a genotype-phenotype
mapping function maps any genotype to a phenotype, possibly in
a many-to-one fashion. Grammatical Evolution (GE) [28] is one
such EA in which the mapping function exploits a user-provided
context-free grammar that is tailored to the speci�c problem being
tackled. In practice, in order to use GE, the user is only required
to provide: (a) the grammar corresponding to a language suitable
to describe candidate solutions and (b) a �tness function able to
assess them. Both things only require the knowledge of the speci�c
domain, whereas the internals of the EA can be ignored by the
user: this feature enabled a wide adoption of GE. Practitioners and
researchers extensively relied on GE to tackle a diverse set of prob-
lems such as, e.g., generation of road tra�c rules [23], identi�cation
of taxonomies in Wikipedia [3], and development of arti�cial neural
networks [1].

Despite having favored its widespread adoption, the genotype-
phenotype mapping of GE has also been largely discussed among
scholars who debated and still debate about the analogies with na-
ture [26, 27, 32, 38], the deviation from its initial motivations [39],
and its properties [20, 24, 33, 34]. Among the several arguments
raised in those discussions, one is particularly signi�cant: the re-
lation between the search e�ectiveness and the tendency of the
mapping to map di�erent genotypes to the same phenotype. �e lat-
ter property is called redundancy and has been recently the subject
of some experimental studies [20, 33]: both works be�er charac-
terized the redundancy in GE, respectively in terms of its (non)
uniformity and its relation with diversity; still, the cited works do
not deliver a clear view on if and how redundancy a�ects the search
e�ectiveness.

On the other hand, redundancy is closely related to neutrality,
i.e., the ability of a genetic operator to introduce di�erent genetic
materials without changing the �tness of an individual [41]. In a
twofold representation EA, such as GE, neutrality can be achieved
also by means of the mapping function which, by favoring many-
to-one mapping, allows the progressive modi�cation of a genotype
without negatively a�ect the corresponding (good) phenotype. In-
deed, high neutrality has been identi�ed as one of the motivations
for GE [8, 9] and stated to be bene�cial to—again—diversity and
eventually to GE e�ectiveness.

In this paper, we propose a novel visualization aimed at easing
the investigation of the relation between genotype-phenotype map-
ping and diversity. We tailored our proposal to GE, because of its
widespread usage and the availability of di�erent variants for the
mapping functions [16, 21, 25], which facilitates the experimental
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validation of the usefulness of this visualization. However, this
visualization is potentially applicable to any EA with a twofold rep-
resentation and the genotype in the form of a sequence of symbols.
Our proposed visualization summarizes in a single, compact heat
map three kinds of information: (a) how diverse are the genotypes
in the population at the level of single genes (diversity); (b) if and
to what degree each individual gene in the genotype contributes
to the phenotype (usage); (c) how the two previous measures vary
during the evolution. �e rationale for showing together a and b
(which form the name of our visualization: Diversity and Usage
map, DU map) is to allow the expert to, on the one hand, easily
spot which portions of the genotype do not or scarcely contribute
in determining the phenotype—hence being those places where
redundancy/neutrality nestle—and, on the other hand, to verify
whether those portions tend to host the largest part of the popula-
tion diversity.

In addition to pursuing the aforementioned primary goal, the
DU map may be useful to EA researchers for: (1) understanding
and possibly validating how di�erent mapping functions work;
(2) providing the ground for the design of new genetic operators
which possibly exploit the knowledge about actual contribution
of genes to the mapping; (3) comprehending how the (lack of)
diversity is distributed along the genotype.

�e remainder of this paper is organized as follows. Section 2
brie�y surveys the state-of-the-art in the visualization of evolution
internals. Section 3 introduces our visualization by presenting its
components and how they are assembled. Section 4 shows how
we applied the DU map to analyze di�erent aspects of GE. Finally,
Section 5 draws the conclusions.

2 RELATEDWORK
Visualization is a powerful tool for supporting reasoning and is
o�en used to gain insight into the workings of EAs. �e visual rep-
resentation of single solutions and populations of solutions heavily
depends on the solution encoding (in the genotype and phenotype
space) and comprises, among others, simple binary “zebra” repre-
sentations [40], heat maps (also called matrix charts or density plots)
for real-valued genotypes [12, 35], graphs and trees for discrete
optimization problems [6], and domain-speci�c representations for
some real-world problems [11, 29, 37]. In case of many objectives,
the focus of the analysis, and consequently visualization, shi�s to
the objective space and the challenge of visualizing Pareto front
approximations [36].

Static representations of solutions and populations can be en-
riched by adding information on the changes brought by crossover
and mutation operators. Some visualization tools speci�cally sup-
port analysis of the relations between parent and o�spring solutions,
and exploration of the ancestry of the chosen (usually best) solu-
tion [5, 6, 19]. Other research focuses on visualizing the progress
of the evolution [13, 18] and the balance between exploration and
exploitation during the search [2, 15]. �e la�er is closely related
to the diversity of solutions.

De�ning diversity can be intricate in the existence of a genotype-
phenotype mapping or in the case of multiple objectives. Neverthe-
less, if speci�ed as a measure on the population, it can be visualized
with the same techniques as the �tness of the best (or median)

individual, for example, with a simple line graph showing how
the diversity of the population changes during the evolution [4].
Another option is to de�ne diversity based on the occurrence of
symbols in the genes, in which case a heat map can be used to
illustrate how diversity evolves for each gene separately [35]. �e
la�er approach is used in our diversity maps.

�e proposed DU map employs color to convey two kinds of
information (diversity and usage) on a single heat map. To the best
of our knowledge, the only other approach that uses a similar idea
of combining several values in one color is the visualization with
pseudo-color [10]. �ere, the heat map of a population contains
binary genotypes of its individuals—one per row. �e color of
each cell/gene is determined depending on the gene value and the
objective and �tness values1 of the individuals. Genes with a value
of 0 are colored in blue, while genes with a value of 1 are red. �en,
these two “basic” colors are modi�ed for the whole row in hue
and brightness depending on the individual’s objective and �tness
values, respectively.

Our approach di�ers from [10] in two aspects: (1) the DU maps
visualize the whole evolution, not just a single population; and
(2) color is assigned for each gene separately and is based on its
diversity and usage rather than on its value and the �tness and
objective of the individual.

3 VISUALIZATIONWITH DU MAPS
As stated in the Introduction, our visualization may be applied to
any EA where the genotype is a sequence of symbols. We here
formally de�ne the entities on which our proposal is built and then
show how those de�nitions are cast to GE.

3.1 Basic de�nitions
We consider a generic EA in which a population of solutions (indi-
viduals) evolves for a number ngen of generations: we denote with
Si the population at the ith generation—we do not require that the
population size remains constant during the evolution. Each individ-
ual s is associated with exactly one genotype д = (д1, . . . ,дl ) ∈ Al ,
which is a sequence of l symbols of an alphabet A. In other words,
all individuals have genotypes with the same length, which remains
constant during the evolution. �is technique could be potentially
applied also to genotypes with variable length, but we argue that it
would not be particularly valuable. Each individual s is also associ-
ated with a phenotype p, which is obtained by means of a mapping
m : Al → P between the genotype space Al and the phenotype
space P.

We assume that a usage function u : Al → [0, 1]l exists, which
measures the degree uk (д) ∈ [0, 1] to which each kth symbol дk
of the genotype д concurred in determining the phenotype m(д).
�e usage function is inherently related to the mapping m; for a
given m, u(д) depends only on д. We also assume that a diversity
functiond : NA → [0, 1] exists,NA being the set of all the multisets
built from A, which measures the symbol diversity of a multiset
A ∈ NA of symbols of A as a number in [0, 1], where 0 means

1A distinction is made between the objective and �tness values to accommodate for
problems where the �tness value contains some other information in addition to
the objective value, such as a penalty determined through expert knowledge of the
problem.
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Figure 1: �e DU map legend: on the le�, the position of a
map cell r.r.t. gene index and the generation number; on the
right, the color w.r.t. the values of the diversity function d
and the usage function u.

minimal diversity (e.g., d(A) = 0 if A contains only instances of
the same symbol) and 1 means maximal diversity (e.g., d(A) = 1 if
A = A).

We propose a new visualization, called the DU map, that visual-
izes information about an evolution S1, . . . , Sngen as a rectangular
color map of size ngen × l—i.e., where the x-axis represents the gen-
eration and the y-axis represents the position within the genotype
(see Figure 1a). In particular, the color of each (x ,y) point in the
map is computed as follows (see Figure 1b). �e intensity value
ired(x ,y) of the red channel is determined by the diversity:

ired(x ,y) = d({дy , s ∈ Sx }) (1)

where дy is theyth symbol of the genotype of the individual s of the
population Sx of the xth generation. �e intensity value igreen(x ,y)
of the green channel is determined by the usage:

igreen(x ,y) =
1
|Sx |

∑
s ∈Sx

uy (д) (2)

where д is the genotype of the individual s of the population Sx
of the xth generation. �e intensity value of the blue channel
iblue(x ,y) is set to 0 for all points (x ,y):

iblue(x ,y) = 0 (3)

As can be seen from Figure 1b, low usage and low diversity is
shown in black, while high usage and high diversity is depicted in
yellow. On the other hand, low diversity and high usage results in
green hues, while high diversity and low usage in red ones.

�e information visualized by the DU map can be decomposed in
two gray-scale heat maps by plo�ing separately the red and green
channels: we called those maps Diversity and Usage, respectively.

3.2 Application to GE
GE [28] has been introduced by Ryan et al. two decades ago as a
variant of Genetic Programming [14] able to generate programs
in any language described by a context-free grammar (CFG). GE
evolves a population of binary strings which are mapped to strings
of the language de�ned by the CFG by means of a mapping function.
�e la�er consumes the genes in the genotype in groups of 8 (each

called codon) in order to choose one of the options in the production
rule for the le�most non-terminal still present in the phenotype.

A�er this seminal work, several other variants of GE has been
introduced, most of them consisting only or mainly of a di�erent
mapping function. In this work, we considered the standard origi-
nal GE [28], Position-independent GE (πGE) [25], a modi�cation
of the Structural GE (SGE) [16], and Weighted Hierarchical GE
(WHGE) [21], all of them operating on binary strings as genotypes.
We refer the reader to the cited papers for more details about these
variants.

As opposed to the other three variants, SGE works on integer
strings as genotypes: the length of the genotype and the domain
of each integer gene is determined based on the grammar [16];
moreover, SGE adopts an ad hoc crossover operator which takes
into account the structure of the genotype. In order to allow for
a more meaningful comparison among the variants, we modi�ed
SGE to use binary strings. Speci�cally, we designed a grammar-
dependant procedure for transforming any binary string in a integer
string in which the length of the string and the domains of the
integers are consistent with the grammar. We also modi�ed the
peculiar SGE crossover operator to handle appropriately binary
string genotypes while roughly preserving the semantic of the
original SGE crossover. �e resulting variant, which we call BitSGE,
vaguely resembles SGERed, a redundant variant of SGE which the
authors of the la�er introduced in [17] in order to analyze more in
detail the redundancy and locality of their proposal.

As we consider binary strings, the alphabet is given by A =
{0, 1}. �e diversity function d is de�ned with:

d(A) = 1 − 2
����12 − |{a ∈ A : a = 0}|

|A|

���� (4)

which results in d(A) = 0 if and only if all bits in A are 0 (or 1) and
in d(A) = 1 if and only if exactly half of the bits are 0.

Finally, the usage function u is de�ned with:

u ((д1, . . . ,дl )) =
1

maxi ∈{1, ...,l } ci
(c1, . . . , cl ) (5)

where ci is the number of times the ith bit has been used during
the mapping. Figure 2 shows an example of the computation of the
color for two speci�c cells on the DU map using the above de�ned
functions d and u. A prototype implementation of the machinery
needed to obtain the DU map from a GE run is publicly available at
h�ps://github.com/ericmedvet/evolved-ge.

Since the way each bit is used during the mapping is tightly
related to the speci�c mapping functionm being adopted by the GE
variant, the proposed usage function u exhibits di�erent properties
for the considered variants. In particular, in GE and πGE, groups
of 8 or 16 adjacent bits in the genotype have the same value for ci
(and hence ui (д)); moreover, each ci is limited to nwrapping, i.e., a
parameter of both variants representing the maximum number of
times the genotype may be reused, if needed, during the mapping—
nwrapping is usually set to 10, as in our experiments. In BitSGE,
ci ∈ {0, 1} (and hence ui (д) can be wri�en simply as ui (д) = ci )
since each bit is used at most once—this is one of the salient features
of BitSGE. In WHGE, no further characterization of u may be made,
since bits can be reused several times and are not grouped in �xed-
length slices.
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Population S10 at generation 10:
д0 = (0, 1, 1, 0, 1, 0, 1, 1) c0 = (1, 1, 1, 1, 0, 0, 0, 0)
д1 = (0, 1, 1, 0, 1, 1, 0, 1) c1 = (1, 1, 1, 1, 0, 0, 0, 0)
д2 = (0, 0, 1, 0, 1, 1, 1, 0) c2 = (1, 1, 1, 1, 1, 1, 0, 0)
д3 = (0, 1, 1, 0, 0, 0, 0, 0) c3 = (1, 1, 1, 1, 1, 0, 0, 0)

Color at position x = 10,y = 2:
ired(10, 2) = d({1, 1, 0, 1}) = 0.5

igreen(10, 2) = 1
4 (1 + 1 + 1 + 1) = 1

iblue(10, 2) = 0

Color at position x = 10,y = 6:
ired(10, 6) = d({0, 1, 1, 0}) = 1

igreen(10, 6) = 1
4 (0 + 0 + 1 + 0) = 0.25

iblue(10, 6) = 0

Figure 2: A color computation example for two cells on the
DU map with genotype length l = 8. At the top, the geno-
types of the four individuals in the population and the cor-
responding counts of bit usages during the mapping. At the
center and the bottom, the computations of the RGB chan-
nels.

4 EXPERIMENTS AND DISCUSSION
4.1 General analysis
We performed one run of each of the four GE variants (GE, πGE,
SGE, and WHGE) on four benchmark problems (Harmonic, Poly4,
Santa-Fe, and Text—the same ones as in [20]) using the parameters
shown in Table 1. Concerning the crossover operator for all but
BitSGE variants, we used a two-points crossover in which the two
cut points are at the same position in the two parents, hence ensur-
ing that the length of the children is the same as the length of the
parents.

Figure 3 shows several di�erent visualizations of the results
obtained on the Poly4 problem with the genotype length l = 256 bit.
In the following, we will discuss them in more detail.

�e �rst two rows of visualizations in Figure 3 are simple line
graphs presenting some measures over the course of the evolution.
�e �rst row shows the best and average �tness of the population
in blue and red, respectively. �e second row shows two di�erent
measures of diversity—the ratio of unique genotypes in the popu-
lation in blue and the ratio of unique phenotypes in red. We can
immediately observe that the phenotype diversity is much lower
than the genotype diversity in all GE variants. Also, while the mid-
dle two variants increase the genotype diversity in the second half
of the evolution, this is hardly re�ected in the phenotype diversity.

Next, the third row in Figure 3 contains “zebra” representations
of the genotype of the best individual for each generation (black
for zeros and white for ones). While these representations allow to
spot some portions of the genotype in which more “noise” re�ects
the occurrence of frequent bit changes (hence suggesting they host

GE πGE BitSGE WHGE
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Figure 3: Di�erent plots (rows, see text) for the Poly4 prob-
lem tackled with the four variants (columns) with a geno-
type of 256 bit.
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Table 1: Evolution parameters for the four GE variants.

Population size (npop) 500
Population initialization random
Genotype length l 256 bit
Generations (ngen) 100
Crossover op. (all but BitSGE) two-points
Crossover op. (for BitSGE) SGE-like
Crossover probability 0.8
Mutation operator Bit �ip with pmut = 0.01
Mutation probability 0.2
Parent selection tournament with size 3
Survival selection best �tness
Replacement m + n withm = n
Codon length (for GE, πGE) 8 bit
nwrapping (for GE, πGE) 10
Max depth (for BitSGE) 6
Max depth (for WHGE) 3

some diversity), it does not give any hint about which bits are
actually used during the mapping.

�e bo�om three rows in Figure 3 present gray-scale Diversity
and Usage maps and the combined DU maps, respectively. On both
gray-scale maps, low values of diversity and usage are shown in
black and a high values in white, while the meaning of the colors
of the DU maps is presented in Figure 1b.

�ree considerations may be done by observing the DU maps
of Figure 3. �e most important is that the DU map allows to
appreciate at a glance that there is a rather clear relation between
the location of the diversity and the actual usage of the genotype
during the mapping. For GE, πGE, and BitSGE in particular, it can
be seen that the portions of the genotype which are not used (not
green or yellow) tend to host most of the diversity (red stripes).
Moreover, whenever a portion begins to be used, the corresponding
bits mostly tend to lose diversity: i.e., the red stripes along the x-axis
stop when the green begins (they are rarely continued as yellow
lines). �e same information is shown separately by the Diversity
and Usage maps, but the interaction between the two properties
can hardly be appreciated by observing those maps side-by-side.

Second, the green and yellow parts of the DU show how the
di�erent mapping functions of the four considered GE variants
consume the genotype in order to produce the phenotype. In par-
ticular, it can be seen that GE and πGE consume the genotype
starting from the lower indexes (i.e., the bo�om in our maps); note
that the wrapping never occurred in these two examples—instead,
wrapping is visible in Figure 4 for πGE on all but one problem and
in Figure 5 for GE with l = 512 bit on the Santa-Fe problem. In
BitSGE, adjacent portions of the genotype are related to di�erent
non-terminals (see [16]): within each portion, bits are consumed
starting from lower indexes. In WHGE, every bit is used at least
once, and the more times they are used, the greater the number of
non-terminals they concurred to map (see [21]).

�ird, by observing the DU map together with the Fitness and
Diversity evolution line graphs, it can be seen that the DU maps
capture key events of the evolution. In particular, when the �tness
is improving, the green channel (usage) changes along the x-axis.

GE πGE BitSGE WHGE
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Figure 4: �e DUmaps for the four problems (rows) tackled
with the four variants (columns) with a genotype of 256 bit.

Figure 4 shows the DU maps for all the problems and all the GE
variants. �e �gure con�rms, in general, the conclusions drawn
from Figure 3. Moreover, maps in Figure 4 give some hints about
the di�erences between problems when tackled with the same GE
variant. For example, it can be seen how the problem grammars
a�ect the structure of the genotype in BitSGE, re�ected by the
number and, to some degree, the width of the green and yellow
stripes.
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Figure 5: Comparison of �ve di�erent genotype lengths
(columns) for two problems (rows) using the standard GE
variant.

4.2 Visualizing the impact of design choices
We performed three additional suites of experiments aimed at ver-
ifying if the DU map can be used to investigate the impact of EA
design choices or parameters on the evolution. In particular, we
focused on: (1) the genotype length l , (2) the introduction of a
diversity promotion strategy, (3) the selection pressure.

4.2.1 Genotype length. �e length of the genotype is a parame-
ter that can be particularly hard to set: when the genotype is too
short, the optimal solution cannot be included in the set of map-
pable phenotypes, whereas, when it is too long, the search space
can be too large to be e�ectively explored.

We performed di�erent runs by changing the GE variant, the
problem, and the value for the genotype length l (128, 256, 512, 768,
and 1024 bit). Figure 5 shows the DU maps for the Harmonic and
Santa-Fe problems with the standard GE variant: to ease visualiza-
tion, the maps are rescaled to have constant height.

�e DU maps highlight the fact that, for a given problem, only
a given number of bits is actually used to generate the solution.
From another point of view, the larger the genotype, the smaller
the portion of the genotype which is used (green and yellow hues).
A large unused portion is an opportunity for redundancy: this
could itself constitute an explanation for the interaction between
individual size, diversity, and redundancy, which have been recently
observed in [20].

4.2.2 Diversity promotion. �e lack of diversity has been one of
the most debated aspects of many EAs and argued to be a motivation
for the premature convergence to sub-optimal solutions [30, 31].
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Figure 6: Impact of the phenotype diversity promotion
(rows) with the four variants (columns) on the Harmonic
problem.

Since our proposed map is designed speci�cally to visualize di-
versity, we performed some experiments in order to verify if and
how it can visually capture the modi�cation induced by a diver-
sity promotion strategy. To this end, we considered a very simple
mechanism consisting in enforcing the diversity at the level of the
phenotype. Speci�cally, whenever a new individual is generated,
if another individual with the same phenotype already exists in
the population, the old individual is discarded and the new one is
inserted in the population. We chose to impose the diversity at
the level of the phenotype because it has been showed that, in GE,
this results in be�er e�ectiveness with respect to the genotype and
�tness levels [22].

We performed di�erent runs by changing the GE variant, the
problem and, for each combination, turning the diversity promotion
mechanism o� and on. Figure 6 shows the DU maps for the Har-
monic problem with all the variants without diversity promotion
(top) and with it (bo�om). Some some observations can be made.

First, the maps make apparent the fact that enforcing the di-
versity at the phenotype level also increases the diversity at the
genotype level: the maps on the bo�om row tend to be less green
and black (a sign of low diversity) and more yellow and red (which
means high diversity) than the ones on the top row. Moreover, it is
easy to appreciate the increase in genotype diversity on the entire
length of the genotype: we remark that simply considering the
diversity index as the ratio of unique genotypes in the population
(see the second row in Figure 3) hardly suggests a similar �nding:
in facts, the degree to which two genotypes di�er is not captured
by that index.

Second, besides capturing, by design, the diversity at the geno-
type level, our map is able to represent also the diversity at the
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phenotype level. It can be seen (in particular for GE and BitSGE)
that the passage between unused (black and red) and used (green
and yellow) areas is sharper in the DU maps obtained without diver-
sity promotion than in the ones with diversity promotion, where it
is more blurred. �is di�erence is caused by the fact that igreen is
the average of the usage on the entire population: if the phenotypes
are all equal, the usage of each bit is the same and igreen tends to
be either 0 or 1, otherwise it takes on di�erent values within [0, 1],
resulting in blurriness. In WHGE the di�erence between using and
not using promotion is less apparent, since usage values for WHGE
spread more uniformly in the interval [0, 1]. Interestingly, it can
be seen by comparing maps corresponding to the same variants
that the rough shape and position of the green and yellow areas
are the same with and without diversity promotion: this suggests
that the population is composed of diverse phenotypes which tend
to resemble the best one.

4.2.3 Selection pressure. A common cause for the low diversity
in Evolutionary Computation (EC) approaches, with respect to
the counterpart natural evolution, has been deemed to be in the
usage of a �tness function instead of an environment [30]—i.e., a
context which can strongly a�ect (in a stochastic way) the ability
of the individual to perform its task. In such a scenario, even
a relatively low selection pressure can result in few individuals,
possibly sub-optimal, dominating all the others, eventually leading
to low diversity in the population. Not surprisingly, the tuning of
the selection pressure has been, since the early days of EC, one of
the weapons used by EA practitioners to �ght the low diversity
and, hence, the premature convergence [7]. We hence performed
some experiments to verify how our DU map visualizes selection
pressure.

We performed di�erent runs by changing the GE variant, the
problem, and the survival selection criterion between two options:
best �tness (as in all other experiments) and random, respectively
corresponding to high and low selection pressure. Figure 7 shows
the DU maps for the Poly4 problem for all the GE variants with the
worst �tness selection (top) and random selection (bo�om).

It can be seen that the maps re�ect the lower selection pressure
in three ways. First, the “slope” of the le�most side of the green
and yellow areas is less steep with low pressure than with high
pressure. �is is particularly apparent for the GE and πGE variants,
whereas it is, due to its nature, di�cult to see for the WHGE variant.
Second, the genotype diversity (red and yellow hues) is higher, but
still tends to decrease when the evolution seems to have reached an
equilibrium (BitSGE and WHGE). Finally, the phenotype diversity
is also higher with low selection pressure than with the high one.
�is is re�ected again in the blurriness of the edges between the
black/red and green/yellow areas—the edges are blurred for low
selection pressure (a sign of high phenotype diversity) and sharp
for high selection pressure (low phenotype diversity).

5 CONCLUDING REMARKS
We have proposed the DU map, a novel compact visualization that
facilitates reasoning about diversity and its relation to genotype-
phenotype mapping. Our technique may be applied to any EA
with a twofold representation (genotype and phenotype) and the
genotype in the form of a sequence of symbols, as GE. �e DU map
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Figure 7: Impact of di�erent selection pressure (rows) with
the four variants (columns) on the Poly4 problem.

is a heat map encoding three kinds of information: (a) genotype
diversity at the level of the single genotype symbol; (b) degree of
genotype symbol contribution to the phenotype (usage); (c) varia-
tion of the two previous measures during the evolution.

We performed several experiments aimed at verifying if the DU
map is indeed helpful in gaining insights about diversity and its
relation to genotype-phenotype mapping. We also explored the
usage of the DU map as a tool for taking more informed decisions
about di�erent EA design options, such as enabling or disabling a
diversity promotion mechanism or varying the selection pressure.
�e outcome of our experimental validation was promising: we
think that the DU map may be a valuable tool for EA, in general,
and GE, in particular, researchers and practitioners interested in
be�er understanding the evolution dynamics.
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