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Final version
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Introduction

Introduction

Multiobjective optimization problem
Minimize

f : X → F
f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

• X is an n-dimensional decision space (or search space)
• F ⊆ Rm is an m-dimensional objective space (m ≥ 2)

Conflicting objectives→ a set of optimal solutions

• Pareto set in the decision space
• Pareto front in the objective space
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Introduction

Visualization in multiobjective optimization

• Solution sets in the decision or objective space (or both)
• Multiobjective landscapes—objective values in the decision
space

Visualization of solution sets useful for:
• Analysis of solutions and solution sets
• Decision support in interactive optimization
• Analysis of algorithm performance

Visualization of multiobjective landscapes useful for:
• Revealing problem properties and difficulties
• Identifying basins of attraction of local optima
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Introduction

Visualizing solution sets in the decision space
• Problem-specific
• If X ⊆ Rm, any method for visualizing multidimensional
solutions can be used

• Not the focus of this tutorial

Visualizing solution sets in the objective space
• Interested in sets of mutually nondominated solutions called
approximation sets

• Different from ordinary multidimensional solution sets

Visualization of multiobjective landscapes
• Important for problem understanding, but few approaches exist
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Introduction

Challenges of visualizing solution sets in the objective space
• High dimension and large number of solutions
• Limitations of computing and displaying technologies
• Cognitive limitations
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Introduction

Visualization can be hard even in 2-D
Stochastic optimization algorithms

• Single run→ single approximation set
• Multiple runs→ multiple approximation sets
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The Empirical Attainment Function (EAF) [23] or the Average Runtime
Attainment Function (aRTA) [10] can be used in such cases
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Introduction

This tutorial does not cover
• Visualization of a few solutions for decision making purposes
(see [41])

• Visualization of solution sets in the decision space
• General multidimensional visualization methods not previously
used on approximation sets

This tutorial covers
• Visualization of solution sets in the objective space

• Single approximation sets [2]
• Repeated approximation sets [3, 10]

• Visualization of multiobjective landscapes

10

A taxonomy of visualization
methods



A taxonomy of visualization methods [1]

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

Showing transformed
objective values

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance
at a time

Showing
performance
over time

Multiobjective
landscapes

Showing original
objective values

Showing transformed
objective values

Showing optima
networks
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Visualizing approximation sets

Visualizing approximation sets

Visualizing single approximation sets

Methodology

Evaluating and comparing visualization methods
• No established methodology for evaluating or comparing
visualization methods

• Propose benchmark approximation sets (analog to benchmark
problems in multiobjective optimization)

• Visualize the sets using different methods
• Observe which set properties are distinguishable after
visualization

• Only applicable to methods showing individual solutions or
individual solution properties

12



Benchmark approximation sets

Three different sets that can be instantiated in any dimension

• Spherical with a clustered distribution of solutions (more at the
corners and less at the center)

• Linear with a uniform distribution of solutions
• Knee-shaped with an even distribution of solutions

Size of each set

• 2-D: 50 solutions
• 3-D: 500 solutions
• 4-D: 500 solutions
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Benchmark approximation sets

Spherical Linear Knee-shaped
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Benchmark approximation sets

An additional set with redundant objectives
• Adapted from [21]
• 12 objectives
• Can be instantiated for any number of 10n solutions (here 100)
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Desired properties of visualization methods

Demonstration on the 4-D spherical, linear and knee-shaped sets
• Preservation of the

• Dominance relation between solutions
• Front shape
• Objective range
• Distribution of solutions

• Robustness
• Handling of large sets
• Simultaneous visualization of multiple sets
• Scalability in number of objectives
• Simplicity

Demonstration on the 12-D approximation set
• Showing relations between objectives
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Visualizing single approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Scatter plot matrix

Most often

• Scatter plot in a 2-D space

• Matrix of all possible combinations of objectives

• m objectives→ m(m−1)
2 different combinations

Alternatively

• Scatter plot in a 3-D space

• m objectives→ m(m−1)(m−2)
6 different combinations
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Scatter plot matrix

Spherical Linear Knee-shaped
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Scatter plot matrix

Spherical Linear Knee-shaped
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Parallel coordinates

• m objectives→ m parallel axes

• Solution represented as a polyline with vertices on the axes

• Position of each vertex corresponds to that objective value

• No loss of information
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Parallel coordinates

Spherical Linear Knee-shaped
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Parallel coordinates

Original
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Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains
all points in the objective space that are weakly dominated by any
solution in A.

Interactive decision maps

• Visualize the surface of the EPH, not the actual approximation
set

• Plot a number of axis-aligned sampling surfaces of the EPH

• Color used to denote third objective

• Fixed value of the forth objective
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Interactive decision maps

f4 = 0.2

Spherical Linear Knee-shaped
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Visualizing single approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Radial coordinate visualization

Also called RadViz
• Inspired from physics

• Objectives treated as anchors,
equally spaced around the
circumference of a unit circle

• Solutions attached to anchors with
‘springs’

• Spring stiffness proportional to the
objective value

• Solution placed where the spring
forces are in equilibrium

f1

f2

f3

f4
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Radial coordinate visualization

Spherical Linear Knee-shaped
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Simultaneous
visualization Scalability Simplicitydominance

relation
front shape objective

range
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× × × ≈ X ≈ X X X
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Level diagrams

• m objectives→ m diagrams

• Plot solutions with objective fi on the x axis and distance to the
ideal point on the y axis
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Level diagrams

Spherical Linear Knee-shaped
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Prosections

• Visualize only part of the objective space

• Dimensionality reduction by projection of solutions in a section

• Need to choose prosection plane, angle and section width
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Prosections

Spherical Linear Knee-shaped
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Prosections

Spherical and Linear
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Visualizing single approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Hyper-space diagonal counting

• Inspired by Cantor’s proof that shows |N| = |N2| = |N3| . . .

(1, 1) (2, 1)

(1, 2)

(3, 1)

(2, 2)

(1, 3)

(4, 1)

(3, 2)

(2, 3)

. . .

• Discretize each objective (choose a number of bins)
• In the 4-D case

• Enumerate the bins for objectives f1 and f2

• Enumerate the bins for objectives f3 and f4

• Plot the number of solutions in each pair of bins
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Hyper-space diagonal counting

Spherical Linear Knee-shaped
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Visualizing single approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Sammon mapping

• A non-linear mapping
• Aims to preserve distances between solutions

• d∗
ij distance between solutions xi and xj in the objective space

• dij distance between solutions xi and xj in the visualized space

• Stress function to be minimized

S =
∑

i

∑
j>i

(d∗
ij − dij)

2

• Minimization by gradient descent or other (iterative) methods
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Sammon mapping

Spherical Linear Knee-shaped
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Distance- and dominance-based mappings

Both mappings

• Use nondominated sorting to split solutions to fronts
• Project solutions onto the circumference of circles (with circle
radius proportional to front number)

Distance-based mapping
• Tries to preserve closeness
of solutions

• Two solutions are very close
if their relations to other
solutions are mostly equal

Dominance-based mapping
• Aims at preserving dominance
relations among solutions

• All x ≺ y can be shown
correctly

• Tries to minimize cases where
x ⊀ y is not shown correctly
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Distance- and dominance-based mappings

Distance-based mapping Dominance-based mapping
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Visualizing single approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Self-organizing maps

• Self-organizing maps (SOMs) are neural networks

• Nearby solutions are mapped to nearby neurons in the SOM

• A SOM can be visualized using the unified distance matrix
• Distance between adjacent neurons is denoted with color

• Similar neurons→ light color
• Different neurons (cluster boundaries)→ dark color

43

Self-organizing maps

Spherical Linear Knee-shaped

44



Aggregation trees

• Binary trees that show relationships between objectives

• Iterative clustering of objectives based on their harmony

• Computation of different types of conflict

• Percentages quantify the conflict between objectives
• Colors used to show type of conflict

• global conflict (black)
• local conflict on ’good’ values (red)
• local conflict on ’bad’ values (blue)

• Can be used to sort objectives in other representations (parallel
coordinates, radial charts, heat maps)
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Aggregation trees

Spherical Linear Knee-shaped
f3 + f1 + f4 + f2 − 91.51%

f3 + f1 − 74.52%

f3 f1

f4 + f2 − 73.99%

f4 f2

f4 + f2 + f3 + f1 − 97.92%

f4 + f2 − 76.86%

f4 f2

f3 + f1 − 75.91%

f3 f1

f2 + f1 + f3 + f4 − 95.76%

f2 + f1 + f3 − 79.79%

f2 + f1 − 67.52%

f2 f1

f3

f4
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f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 + f7 + f11 + f3 − 100%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 + f7 − 26%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 + f5 − 24%

f8 + f6 + f4 + f2 + f12 + f10 + f9 + f1 − 3.2%

f8 + f6 + f4 + f2 + f12 + f10 + f9 − 2%

f8 + f6 + f4 + f2 + f12 + f10 − 0%

f8 + f6 + f4 + f2 − 0%

f8 + f6 − 0%

f8 f6

f4 + f2 − 0%

f4 f2

f12 + f10 − 0%

f12 f10

f9

f1

f5

f7

f11 + f3 − 24%

f11 f3

Aggregation trees
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Visualizing approximation sets

Visualizing repeated approximation sets



Visualizing repeated approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]

Showing performance at a time with the Empirical Attainment
Function (EAF) [23]
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Empirical attainment function

Goal-attainment
• Approximation set A
• A point in the objective space z is attained by A when z is
weakly dominated by at least one solution from A
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Empirical attainment function

EAF values [23]
• Algorithm A, approximation sets A1,A2, . . . ,Ar

• EAF of z is the frequency of attaining z by A1,A2, . . . ,Ar

• Summary (or k%-) attainment surfaces
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• Visualization with line plots and heat maps
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Empirical attainment function

Differences in EAF values [36]
• Algorithm A, approximation sets A1,A2, . . . ,Ar

• Algorithm B, approximation sets B1,B2, . . . ,Br

• Visualize differences between EAF values
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• Visualization with heat maps
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Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of
cuboids

Exact case
• EAF values: Slicing [3], Visualization of facets [13, 24]
• EAF differences: Slicing, Maximum intensity projection [56, 3]

Approximated case
• EAF values: Grid-based sampling [30], Slicing, Direct volume
rendering [14, 3]

• EAF differences: Slicing, Maximum intensity projection, Direct
volume rendering
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Benchmark approximation sets

Two groups of spherical approximation sets
• 5 spherical approximation sets with a clustered distribution of
solutions (different radii, 100 solutions in each)

• 5 spherical approximation sets with a uniform distribution of
solutions (different radii, 100 solutions in each)

Clustered spherical Uniform spherical
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Exact 3-D EAF values and differences

Slicing
• Visualize cuboids intersecting the slicing plane
• Need to choose coordinate and angle

r
1

z z
′

o

o
′

f1

f2

f3

ϕ
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Exact 3-D EAF values and differences

Slicing

Clustered Uniform Difference

φ = 5◦
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Approximated attainment surfaces

Grid-based sampling
Repeat for all fifj, i < j (i.e. f1f2, f1f3 and f2f3):

• Construct a k × k grid on the plane fifj
• Compute intersections between the attainment surface and the
axis-aligned lines on the grid

Clustered Uniform
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Visualizing repeated approximation sets

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]

Showing performance over time with the Average Runtime
Attainment Function (aRTA) [10]
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Average Runtime Attainment Function

aRTA value
• Algorithm A run r times
• All solutions that are nondominated at creation are recorded
• aRTA(z) is the average number of evaluations needed to attain z

aRTA ratio
• Algorithms A and B
• Visualize ratio between aRTA(z) values for A and B
•
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Benchmark approximation sets

Two groups of sets mimicking convergence to a spherical front
• 5 sets mimicking logarithmic convergence to a spherical front
with a clustered distribution (100 solutions each)

• 5 sets mimicking linear convergence to a spherical front with a
uniform distribution (100 solutions each)

Clustered with Uniform with
logarithmic convergence linear convergence
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Average Runtime Attainment Function

Grid-based sampling

Clustered with Uniform with Ratio
logarithmic convergence linear convergence
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Visualizing multiobjective
landscapes

Visualizing problem landscapes

• Single objective: visualize objective values in the decision space
• Multiple objectives: ?
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Benchmark problems

The bbob-biobj test suite [11]
• Each bi-objective function constructed as the combination of
two single-objective bbob functions

• Problems scalable in the number of decision variables
• Known single-objective optima, but not the Pareto set (or front)
• Included in the COCO platform
(https://github.com/numbbo/coco)
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https://github.com/numbbo/coco


Benchmark problems with 2-D and 5-D decision spaces

Three bbob-biobj benchmark problems
• Double sphere problem (F1 = (f1, f1) in 2-D and 5-D, instance 1)
• Sphere-Gallagher problem (F10 = (f1, f21) in 2-D and 5-D,
instance 1)

• Double Gallagher problem (F55 = (f21, f21) in 2-D and 5-D,
instance 1)

*Gallagher = Gallagher’s Gaussian 101-me Peaks Function
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Visualizing multiobjective landscapes

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]

64

Level sets

• Curves connecting points with the same value
• Orange = first objective, blue = second objective
• Demonstration on the 2-D benchmark problems

Double sphere problem Sphere-Gallagher problem Double Gallagher problem
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Line walks

• Equidistant sampling of the decision space along a line
• The line does not have to be parallel to an axis
• Not constrained by the decision space dimension
• Two display options

• Show resulting values for each objective separately
• Show resulting values in the objective space

• Demonstration on the 5-D benchmark problems
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Line walks

Double sphere problem in 5-D

Decision space Objective space
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Line walks

Sphere-Gallagher problem in 5-D

Decision space Objective space
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Line walks

Double Gallagher problem in 5-D

Decision space Objective space
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Visualizing multiobjective landscapesVisualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]

Showing transformed objective values
• Decision space approximated with a grid of points
• Show value using color (contours or the third dimension)
• Suitable only for 2-D decision spaces
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Visualizing dominance ranks

• Discretized decision space (1000 × 1000 grid)
• Rank = number of grid points that dominate the current point
• All nondominted points have a rank of zero
• Visualize normalized ranks in logarithmic scale
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Visualizing dominance ranks

Double sphere problem Sphere-Gallagher problem Double Gallagher problem
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Visualizing local dominance

• Discretized decision space (1000 × 1000 grid)
• Moore neighborhood = eight surrounding points
• Compute three different kinds of regions

Green Locally dominance-neutral regions
• Points that are mutually nondominated with all
their neighbors

• Not equal to local Pareto sets
Pink Basins of attraction
White Boundary regions

• Can take a long time to compute
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Visualizing local dominance

Double sphere problem Sphere-Gallagher problem Double Gallagher problem
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Visualizing cumulative gradients

• Discretized decision space (1000 × 1000 grid)
• Compute the bi-objective gradient for all grid points

v =
v1

||v1||
+

v2
||v2||

• From a grid point, follow the path in the direction of the
bi-objective gradient

• Sum all bi-objective gradient values along the path
• Visualize cumulative gradients in logarithmic scale
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Visualizing cumulative gradients

Double sphere problem Sphere-Gallagher problem Double Gallagher problem
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Global vs. local information

Sphere-Gallagher problem

Dominance rank Local dominance Cumulative gradient
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Visualizing multiobjective landscapes

How to handle such visualization when n > 2?

Level sets, dominance ranks, local dominance and cumulative
gradients

• Require cuts through the decision space (cf. slicing)
• Challenging to compute and interpret these methods in n-D

Line walks

• A useful alternative for high-dimensional decision spaces
• The presented information is very limited
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Visualizing multiobjective landscapes

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Summary

Summary

Visualization in Multiobjective Optimization

Pareto front
approximations

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
objective values

– Scatter Plot Matrix
– Bubble Chart
– Parallel Coordinates [28]
– Radar Chart
– Chord Diagram [32]
– Heat Map [45]
– Interactive Decision
Map [37]
– Nasseh Method [37]

Showing transformed
objective values

– Radial Coordinate
Visualization [26]
– 3-D Radial Coordinate
Visualization [27]
– Tetrahedron Coordinates
Model [7]
– Polar Plots [25]
– Hyper-Radial
Visualization [12]
– Level Diagrams [8]
– Prosection Plots [2]
– PaletteViz [47]

Set properties
(visualizing solutions
dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and Distribution
Charts [5]
– Pareto Shells [52]
– Hyper-Space Diagonal
Counting [4]
– Tree Map [54]
– Trade-off Region Map [44]

Optimization
based

– Principal Component
Analysis [57]
– Sammon Mapping [50]
– Neuroscale [15]
– Multidimensional
Scaling [53]
– Isomap [34]
– Seriated Heatmap [53]
– Two-Stage Mapping [33]
– Distance-Based and
Dominance-Based
Mappings [16]

Showing aggregated
properties

– Self-Organizing Map [43]
– Aggregation Tree [21]
– MoGram [49]
– Trend Mining [6]

Repeated
approximation sets

Showing
performance
at a time

– Line Plot [20]
– Heat Map [36]
– Visualization of Facets [24]
– Grid-Based Sampling [30]
– Slicing [3]
– Maximum Intensity
Projection [3]
– Direct Volume
Rendering [3]
– Circular Indicator Plot [55]

Showing
performance
over time

– Grid-Based Sampling [10]

Multiobjective
landscapes

Showing original
objective values

– Level Sets
– Line Walks [11, 51]

Showing transformed
objective values

– Dominance Rank [19]
– Local Dominance [17]
– Cumulative Gradient [29]

Showing optima
networks

– Pareto local optimal
solutions network [35]
– Pareto local optima
network [18]
– Dominance-neutral
optima network [18]
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Summary

• Visualization in multiobjective optimization useful for various
purposes

• Customized methods are needed to address the peculiarities of
approximation set visualization as well as multiobjective
landscape visualization

• New visualization methods should first be analyzed using
approximation sets and problems with known properties

• Visualization methods should also be evaluated with user
studies (never done in multiobjective optimization and seldom
in evolutionary computation [39])
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