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ABSTRACT
In multiobjective optimization, many techniques are used to vi-
sualize the results, ranging from traditional general-purpose data
visualization techniques to approaches tailored to the specificities of
multiobjective optimization. The number of specialized approaches
rapidly grows in the recent years. To assist both the users and
developers in this field, we propose a taxonomy of methods for vi-
sualizing Pareto front approximations. It builds on the nature of the
visualized data and the properties of visualization methods rather
than on the employed visual representations. It covers the methods
for visualizing individual approximation sets resulting from a single
algorithm run as well as multiple approximation sets produced in
repeated runs. The proposed taxonomy categories are characterized
and illustrated with selected examples of visualization methods. We
expect that proposed taxonomy will be insightful to the multiob-
jective optimization community, make the communication among
the participants easier and help focus further development of visu-
alization methods.

CCS CONCEPTS
• Human-centered computing → Visualization techniques;
Scientific visualization; Visualization theory, concepts and
paradigms; • Theory of computation→ Stochastic control and
optimization;
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1 INTRODUCTION
Multiobjective optimization deals with finding solutions to opti-
mization problems with multiple conflicting objectives. An ideal
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multiobjective optimization algorithm returns a set of nondomi-
nated solutions approximating the Pareto front, referred to as an
approximation set. While assessing the quality and comparing ap-
proximation sets is also a multiobjective problem, visualization can
be utilized as a complementary technique to scrutinize the results.
Visualization may be helpful in a number of tasks related to mul-
tiobjective optimization, such as estimating the properties of the
Pareto front, investigating trade-offs between the objectives, iden-
tifying preferred solutions, tracking the convergence of algorithm
runs, comparing the performance of algorithms, and supporting
interactive optimization.

In the broad field of data visualization, the methods have tra-
ditionally been classified according to the characteristics of data
being visualized, and the distinction between scientific visualiza-
tion [22] and information visualization [37] has been adopted. This
separation is practical, but may discourage research bridging the
two subfields. To better understand how they relate and overlap,
[39] introduces an alternative taxonomy of visualization methods
considering the properties of the methods themselves and involving
the users and their conceptual models.

On the other hand, not many attempts of classifying the visual-
ization methods in view of multiobjective optimization have been
reported. In a review of methods to visualize Pareto front approxi-
mations [42], we distinguish between the general multidimensional
data visualization methods designed outside the field of evolution-
ary multiobjective optimization and the methods specifically de-
signed for visualization in multiobjective optimization. While the
former make no effort to preserve the Pareto dominance relation
between solutions or any other feature specific to multiobjective
optimization, the latter were designed as attempts to overcome
these limitations.

In [4], visualization techniques are surveyed in the context of
knowledge discovery in multiobjective optimization. The authors
list numerous data mining methods that can be used to extract
knowledge about the problems from the solutions generated in
the optimization process and classify them by methodology and
type of the extracted knowledge. While their top-level classification
consists of descriptive statistics, visual data mining, and machine
learning methods, the visual data mining methods are further di-
vided into graphical visualization, clustering-based visualization
and manifold learning methods. To our best knowledge, this is the
most detailed classification of visualization methods for multiob-
jective optimization by now.

With the progress of multiobjective optimization, the number
of visualization approaches deployed in the field rapidly grows
too. This especially holds for newly designed methods tailored to
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Methods for visualizing Pareto front approximations

Single
approximation sets

Individual solutions
(visualizing solutions

independently from

each other)

Showing original
values of solutions

– Scatter plot matrix

– Bubble Chart

– Parallel
Coordinates [21]

– Radar Chart

– Chord Diagram [25]

– Heat Map [35]

– Interactive Decision
Map [29]

Showing transformed
values of solutions

– Radial Coordinate
Visualization [19]

– 3-D Radial Coordinate
Visualization [20]

– Tetrahedron
Coordinates Model [5]

– Polar Plots [18]

– Hyper-Radial
Visualization [10]

– Level Diagrams [6]

– Prosection Plots [42]

Set properties
(visualizing solutions

dependently from

each other)

Showing individual
solution properties

Not optimization
based

– Distance and
Distribution Charts [3]

– Pareto Shells [46]

– Hyper-Space
Diagonal Counting [2]

– Tree Map [45]

– Trade-off Region
Map [34]

Optimization
based

– Principal Component
Analysis [50]

– Sammon Mapping [44]

– Neuroscale [13]

– Multidimensional
Scaling [47]

– Isomap [27]

– Seriated Heatmap [47]

– Two-Stage
Mapping [26]

– Distance-Based and
Dominance-Based
Mappings [14]

Showing aggregated
properties

– Self-Organizing
Map [33]

– Aggregation Tree [11]

– moGram [40]

Repeated
approximation sets

Showing
performance

at a time

– Line Plots [15]

– Heat Maps [28]

– Visualization of
Facets [17]

– Grid-Based
Sampling [23]

– Slicing [41]

– Maximum Intensity
Projection [41]

– Direct Volume
Rendering [41]

Showing
performance

over time

– Grid-Based
Sampling [9]

Figure 1: The proposed taxonomy.

the specificities of multiobjective optimization. To assist both the
users and developers with a better insight into the field, we pro-
pose a detailed taxonomy of methods for visualizing Pareto front
approximations. It covers the methods for visualizing individual
approximation sets resulting from a single algorithm run as well
as multiple approximation sets produced in repeated runs. Note,
however, that besides approximation sets, visualization in multiob-
jective optimization covers additional aspects, such as visualizing
the problem landscape in order to better understand the problem
properties, or visualizing a (small) solution set to support decision
making. While these are also important, they are outside the scope
of this work and the related methods are not part of the proposed
taxonomy.

The paper is further organized as follows. Section 2 presents the
proposed taxonomy. Section 3 focuses on the methods visualizing
single approximation sets. It introduces two approximation sets
with particular characteristics, created to demonstrate the perfor-
mance of the visualization methods. It then reviews the related
categories of methods by presenting a selected method for each

category, showing the resulting visualization of the test sets, and
listing other methods fitting in the category. Section 4 deals with
the methods for visualizing repeated approximation sets. It presents
four groups of approximation sets mimicking results of repeated
algorithm runs and discusses the available methods for visualizing
algorithm performance at a time and over time. Section 5 concludes
the paper with a summary of our work and some observations
following the classification of methods for visualizing Pareto front
approximations according to the proposed taxonomy.

2 THE PROPOSED TAXONOMY
The idea for the taxonomy is to build on the nature of the visualized
data and the properties of visualization methods rather than on the
employed visual representations, such as points, lines, graphs and
maps. Shown in Figure 1, the taxonomy at the highest level dis-
tinguishes between the two fundamentally different categories of
methods: those that visualize single approximation sets and those vi-
sualizing repeated approximation sets. The former category stands
for methods that primarily represent one or few approximation sets

650



A Taxonomy of Methods for Visualizing Pareto Front Approximations GECCO ’18, July 15–19, 2018, Kyoto, Japan

at a time. Even if multiple sets are shown, they are handled individu-
ally regardless of whether they result from one or more algorithms.
These methods can also be used to monitor the algorithm progress
by generating a sequence of such individual plots (animation). On
the other hand, the latter category is aimed at representing multiple
algorithm runs or the entire evolution of the optimization process
in a single plot. This is achieved by introducing a function that col-
lects the information on the optimizer performance in each point
of the objective space and then visualizing this function.

Visualizing single approximation sets is further divided into vi-
sualizing individual solutions from an approximation set and visual-
izing the properties of an approximation set. Visualizing individual
solutions means the solutions are visualized independently from
each other, i.e., adding or removing a point to/from the original
approximation set implies adding or removing the corresponding
point in the visualized set without affecting the other points. This
can be done in two ways, either by showing the original values
of the solutions or first performing some transformation and then
showing the transformed values of solutions.

Visualizing the properties of an approximation set means the
solutions are visualized dependently of each other, i.e., any change
of a point in the original approximation set reflects in a change in
the considered set property and, consequently, in the visualization.
This large category consists of the methods showing individual
solution properties and the methods showing aggregated proper-
ties. Examples of individual solution properties are the relations
between the points and the distances among them, while the ag-
gregated properties are, for example, the clustering of solutions
and the relations between objectives. The methods showing in-
dividual solution properties are further classified into those that
involve no optimization procedure in extracting the set property
to be visualized and those that make use of optimization for this
purpose.

The second top-level category, i.e., the methods visualizing re-
peated approximation sets, comprises two lower-level categories,
the methods showing the optimizer performance at a time and the
methods showing the optimizer performance over time. They differ
in the function used to represent the optimizer performance in each
point of the objective space. In the former case it is the Empirical
Attainment Function (EAF) [16] that collects the information on the
proportion of runs in which the points were attained. In the latter
case a generalization of the EAF is used, called the Average Runtime
Attainment (aRTA) function [9] which additionally contains the
information on when a point was first attained. In both cases the
visualized function can be represented the aggregated information
in a single plot.

To be as comprehensive as possible, the taxonomy scheme in
Figure 1 also lists the individual visualization methods belonging
to each category together with their references.

3 VISUALIZING SINGLE APPROXIMATION
SETS

3.1 Approximation Sets
We illustrate the methods for visualizing single approximation
sets with two sets of equal dimensionality and size, but different
characteristics. They can be regarded as solutions to two distinct

multiobjective optimization problems where all objectives need to
be minimized. While only the instantiation with four objectives and
500 points is used for visualization in this section, the procedures
for constructing these sets are general and can be used for any
dimensionm and number of points n.

3.1.1 The Spherical Set. The spherical set contains points in the
first orthant (them-dimensional analogue to the first quadrant) of
the m-dimensional hypersphere of radius 1. The points are con-
centrated inm clusters around them standard basis vectors. Each
cluster is constructed by generating points according to the von
Mises-Fisher distribution [31] centered around the corresponding
standard basis vector and with the concentration parameter κ set
to 25. Any points located outside of the first orthant are discarded,
therefore the generation of points (performed with the Ulrich-Wood
algorithm [49]) is continued until the desired number of points in
each cluster is generated. A 3-D instantiation of the spherical set
with 500 points is shown in Figure 2 (a).
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(a) The spherical set (b) The knee-shaped set

Figure 2: 3-D counterparts to the 4-D approximation sets
used for comparing visualization methods in Section 3.

3.1.2 The Knee-Shaped Set. The second set consists of evenly
distributed points that lie on the knee-shaped Pareto front of the
scaled DEBmDK problem for K = 1. The scaled problem is obtained
by normalizing the original DEBmDK problem [8] so that its Pareto
front is in [0, 1]m . The set is constructed by sampling the optimal
solutions to the scaled problem using the Mitchell’s best-candidate
algorithm [32] that works as follows. To create each point, 100
candidate samples are first generated. Then, the candidate that has
the largest minimal distance to the already existing points in the
set is added to the set. A 3-D instantiation of the knee-shaped set
with 500 points is shown in Figure 2 (b).

3.2 Visualizing Individual Solutions
3.2.1 Showing Original Values of Solutions. An example of a

method showing the original values of solutions is the scatter plot
matrix that projects the points from the objective space to a selected
lower-dimensional space by disregarding all other dimensions. All
possible combinations of these lower-dimensional spaces form the
scatter plot matrix. Most frequently, scatter plots in a 2-D space
are used for projection, where form objectives m(m−1)

2 different
combinations are possible (see Figure 3 for four objectives). The
scatter plot matrix is a fast, simple and robust visualization method.
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Figure 3: Scatter plot matrix.

Visualizing our test approximation sets with the scatter plot
matrix, we can observe the loss of information because of the di-
mensionality reduction. For the clustered spherical set only three
out of four clusters are seen, while for the knee-shaped set the
information on even distribution of the points is lost. Both effects
are due to the overlapping points in the visualized space. A way to
alleviate this shortcoming to a certain degree would be the use of
colors or interactivity.

Other methods in this category include various general multidi-
mensional data visualization methods, such as the bubble chart, the
radar chart, the parallel coordinates [21], the chord diagram [25],
and the heat maps [35], as well as a specialized method called the
interactive decision maps [29].

3.2.2 Showing Transformed Values of Solutions. Transformed
values of solutions are, for example, shown by the Radial Coor-
dinate Visualization, also known as RadViz [19]. It is inspired by
spring mechanics. The objectives (called dimensional anchors) are
distributed evenly on the circumference of the unit circle. One can

then imagine that each point in the objective space is held with
springs attached to the anchors and the spring force is proportional
to the value of the corresponding objective. The point positions
where the spring forces are in equilibrium. As illustrated by our
test examples in Figure 4, the RadViz is capable of preserving the
distribution of points in the approximation sets, but not the shape
of the set.

f1

f2

f3

f4

f1

f2

f3

f4

(a) The spherical set (b) The knee-shaped set

Figure 4: Radial coordinate visualization.

While the RadViz is a general data visualization method, ad-
ditional methods in this category were proposed specifically for
visualizing approximation sets. They comprise the 3-D radial co-
ordinate visualization [20], the tetrahedron coordinates model [5],
the polar plots [18], the hyper-radial visualization [10], the level
diagrams [6, 7], and the prosections [42].

3.3 Visualizing Set Properties
3.3.1 Showing Individual Solution Properties. According to the

proposed taxonomy, the methods showing the properties of in-
dividual solutions from an approximation set are further divided
into a subcategory involving no optimization when generating a
visualization, and another subcategory where visualization is based
on an optimization procedure. We illustrate the former with the
hyper-space diagonal counting [1] and the latter with the Sammon
mapping [36].

Hyper-space diagonal counting is inspired by Cantor’s proof
that the set of natural numbers N has the same cardinality as the
setNm , wherem ∈ N. As a consequence, the setNm can be mapped
into N using the hyper-space diagonal counting presented in [2]
and visualized as further suggested in [1]. We demonstrate the
approach on the case of 4-D approximation sets. Each objective is
first divided into a predefined number of bins, 10 in our example.
Next the bins of a pair of objectives are counted according to hyper-
space diagonal counting. This produces indices for this pair of
objectives. Finally, the indices are plotted on the first two axes,
while the third axis is used to plot the number of points of the
approximation set appearing in the same set of bins.

The hyper-space diagonal counting visualization of our test sets
is shown in Figure 5. In the case of the clustered spherical set, the
loss of information is evident. One cannot recognize the original
clustering of points as the visualization results in two clusters only.
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Figure 5: Hyper-space diagonal counting.

On the other hand, the uniform distribution of points in the knee-
shaped set is better preserved and, to some degree, their distance
to the ideal point is maintained too.

Additional visualization menthods involving no optimization
procedure include the distance and distribution charts [3], the
Pareto shells [46], the treemaps [45], and the trade-off region maps
[34].

As an optimization-based method, Sammon mapping [36] aims
to keep distances between the mapped points as similar as possible
to distances between the original points. Specifically, it minimizes
a stress function reflecting the preservation of local distances. The
stress function is defined as S =

∑
i
∑
j>i (d

∗
i j − di j )

2, where d∗i j is
the distance between points xi and xj in the objective space, and
di j the distance between the two points in the visualized space.
The function can be minimized either by gradient descent or by
other (iterative) optimization methods. While Sammon mapping
was designed as a general data visualization technique, its use in
multiobjective optimization was reported in [44].

For our test approximation sets the Sammon mapping preserves
the distribution of points to a high degree (Figure 6). With respect
to this feature the Sammon mapping is comparable with the RadViz.
What is however lost in Sammon mapping, but partially preserved
in RadViz is the information on the relative position of points in
the objective space.
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(a) The spherical set (b) The knee-shaped set

Figure 6: Sammon mapping.

A number of methods fall in the optimization-based category:
the principal component analysis [50], the neuroscale [13, 30], the
multidimensional scaling [47], the isomap [27, 38], the seriated
heatmaps [47], the two-stage mapping [26], and the distance-based
and dominance-based mappings [14].

3.3.2 Showing Aggregated Properties. Aggregated properties of
approximation sets can, for instance, be visualized using the Self-
Organizing Maps (SOMs) [24]. These are artificial neural networks
aimed at providing a topology-preserving mapping from an m-
D space to a lower-dimensional (typically 2-D) space, such that
nearby points in the input space are mapped to nearby units (neu-
rons). Among various methods suitable to visualize the SOMs, the
most frequently used is the unified distance matrix (U-matrix) that
presents the distance between adjacent neurons using a color scale.
Light areas denote clusters of similar neurons, while dark areas
correspond to cluster boundaries. Illustrating their performance,
we use the SOMs with neurons arranged on the hexagonal grid
[33].

Figure 7 shows the visualization of the two test sets. The SOMs
well present the distribution of points in both cases. One can see
the four clusters of the spherical set and the uniform distribution
of points in the knee-shaped set.

(a) The spherical set (b) The knee-shaped set

Figure 7: Self-organizing maps.

Besides the SOMs, the aggregation trees [11] and the moGrams
[40] fit into the category of visualization methods showing aggre-
gated properties of approximation sets.

4 VISUALIZING REPEATED
APPROXIMATION SETS

4.1 Repeated Approximation Sets
Repeated approximation sets are represented by two groups of
spherical sets that have different radii and distributions of points—
clustered and uniform. Moreover, algorithm convergence is mim-
icked by adding information on the time when each point of a set
was created (expressed as the consecutive number) and translat-
ing the points so that the initial points are away from the front
and approach the front as time increases. This results in two addi-
tional groups of sets—clustered sets with a logarithmic convergence
and uniform sets with a linear convergence. For the purpose of this
study, each group contains five sets and each set contains 100 points.
The sets of the first two groups are instantiated in 3-D, while the
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sets of the last two groups are instantiated in 2-D, matching the
capabilities of the corresponding visualization methods.

4.1.1 Clustered Sets. This group consists of spherical sets with
a non-uniform distribution of solutions, i.e., the same kind of sets
as the ones already presented in Section 3.1.1. The radii of these five
sets were determined randomly following the normal distribution
with mean 0.9 and standard deviation 0.05.

4.1.2 Uniform Sets. The five sets in this group have spherical
shape and a uniform distribution of vectors constructed by follow-
ing the procedure detailed in Section 3.1.2. The radii of these sets
were set randomly following the normal distribution with mean 1.0
and standard deviation 0.05.

4.1.3 Clustered Sets with a Logarithmic Convergence. This group
is constructed based on the clustered spherical sets. The logarithmic
convergence is mimicked by randomly sorting all points of a set and
then assigning to each point in turn a new position along the same
direction from the ideal point, but with a different distance to the
ideal point. This distance starts at the value of 2.0 and is diminished
to 1.0 following a logarithmic-like convergence behavior—faster
at the beginning and slower at the end. Each point in a set has
an associated ‘time’ that equals its consecutive number in this
procedure. Note that the resulting sets contain many dominated
points.

4.1.4 Uniform Sets with a Linear Convergence. This group is
formed analogously to the procedure described in Section 4.1.3 with
the difference that the underlying sets have a uniform distribution of
points and the convergence is linear. For the first point, the distance
to the ideal point equals 1.8, which is then linearly diminished until
reaching 0.9 for the last point.

4.2 Showing Performance at a Time
Assume an algorithm was run r times, producing r approximation
sets. For each point in the objective space, the EAF value equals the
frequency of attaining that point by these approximation sets [16].
That is, the EAF value is a number in {0, 1/r , 2/r , . . . , (r − 1)/r , 1}
assigned to each point in the objective space. This means that the
objective space is partitioned into areas of different EAF values.
The boundaries between those areas are called attainment surfaces.
The EAF can be valuable also when comparing two algorithms.
The differences between the EAF values of two algorithms show
areas in which one algorithm performs differently (or equally) to
the other.

Visualization of the EAF values (or differences in EAF values)
can take two forms—visualization of the attainment surfaces and
visualization of the attained areas. A crucial consideration that
needs to be made when visualizing EAF values is the dimensional-
ity of the objective space. If the objective space has two dimensions,
attainment surfaces are lines and can be plotted with simple line
plots [15]. Similarly, the areas with equal EAF values are rectan-
gles and can be plotted using heat maps [28]. In 3-D, however, the
surfaces are facets of rectangular cuboids and the areas are rect-
angular cuboids, which is challenging for computation as well as
visualization. This is why a sensible approach to visualization of

EAF values in the 3-D objective space is to employ approximation
of the elements to be visualized.

The first approach to visualization of 3-D attainment surfaces
was a grid-based sampling of the surface [23], while an exact way
of visualizing the facets was used only very recently [17]. On the
other hand, the first (and so far only) methods to visualize 3-D
attained areas were presented in [41]. Some (slicing and maximum
intensity projection [48]) can be applied to visualize exact rectangu-
lar cuboids, while others (direct volume rendering [12]) can only be
used if the objective space is discretized into voxels (spatial pixels).

Slicing [41] cuts through the objective space under an angle and
visualizes the resulting intersection between the cutting plane and
the 3-D attained areas with a 2-D heat map. Figure 8 shows the slices
of EAF values and differences in those values for the clustered and
uniform sets when cutting through the plane f1, f2 under the angle
of 45◦. Slicing through the objective space under multiple angles is
required to gain an understanding of the algorithm performance in
the entire objective space.
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Figure 8: EAF values (top) and their differences (bottom) for
the 3-D groups of clustered and uniform spherical sets visu-
alized using slicing of the plane f1, f2 under the angle of 45◦.
Darker colors correspond to higher absolute values.

4.3 Showing Performance over Time
The aRTA function [9] can be seen as a generalization of the EAF.
Instead of counting only the frequencies of attaining objective
space points, the aRTA value equals the average time (measured
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in number of evaluations) needed to attain the objective space
points. This means that it is able to capture the performance of
an algorithm over multiple runs and over time. Analogous to the
differences in EAF values, the ratio of aRTA values can be used to
compare performances of two algorithms.

As the EAF, the aRTA function assigns values to objective space
points and the elements to be visualized are essentially the same—
objective space areas. However, because aRTA records the entire
optimization process, not just its final best solutions, the resulting
partition of the objective space is much finer than the one created
by the EAF. This can be very demanding already for small sets,
therefore [9] proposes to visualize aRTA values using grid-based
sampling. So far, the aRTA values have only been visualized for
2-D objective spaces, but the same methods capable of visualizing
approximated 3-D EAF values could also be used for visualizing
approximated 3-D aRTA values. Figure 9 presents the grid-based
sampling visualization of aRTA values and ratios between those
values for the 2-D clustered sets with a logarithmic convergence
and the uniform sets with a linear convergence.
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hues show better attainment by the clustered/uniform sets,
while white areas were attained equally well by both groups)

Figure 9: aRTA values (top) and their ratios (bottom) for the
2-D groups of clustered sets with a logarithmic convergence
and uniform sets with a linear convergence using grid-based
sampling with a grid of 100 × 100 points. Darker colors cor-
respond to higher absolute values.

5 CONCLUSIONS
In multiobjective optimization many approaches are used to visu-
alize the results, ranging from general-purpose data visualization

methods to specialized methods designed to serve the specific needs
of visualizing the datasests inmultiobjective optimization. The num-
ber of specialized approaches rapidly grows in the last years. To up-
grade the previous straightforward classifications known from the
literature, we have devised a more detailed taxonomy of methods
for visualizing Pareto front approximations. The taxonomy builds
on the nature of the visualized data and the properties of visualiza-
tion methods rather than on the employed visual representations.
It covers the methods for visualizing individual approximation sets
resulting from a single algorithm run as well as multiple approx-
imation sets produced in repeated runs. The proposed taxonomy
categories are characterized, equipped with the lists of correspond-
ing methods and illustrated with selected examples of visualization
methods. In these examples, the test approximation sets created
specifically in this work are used to show some aspects of the
methods.

Some observations that immediately follow from the new tax-
onomy are as follows. It is evident that the visualization of single
approximation sets has been investigated much more intensively
than the visualization of repeated approximation sets. As a result,
many more methods exist for the first task than for the second
one. On the other hand, the numerous methods of visualizing sin-
gle approximation sets can be used to visualize the repeated sets
too if appropriately utilized, e.g., in animations. Further develop-
ment in this direction would certainly increase the potentials of the
methodology.

Moreover, a more detailed analysis of strenghts and weaknesses
of the approaches, which was not possible here due to space limita-
tion, would help better understand the methodology and allow for
deeper insight in when and how to use individual methods or their
combinations. However, in pursuing this goal it is important that
methods are first analyzed on solution sets with known properties,
such as the ones used in this work. An additional example is a study
of visualizing knee-shaped 4-D Pareto front approximations with
various methods reported in [43]. Working with benchmarks of
this kind will make comparison of visualization methods easier, as
it is the case with the test suites used to compare the optimization
algorithms.

In conclusion, we expect the proposed taxonomy will be insight-
ful to the multiobjective optimization community and will make
communication on the visualization methods among the partici-
pants easier. Specifically, the practitioners may be able to better
navigate among the many categories of the visualization methods
and their properties, while the researchers developing new visu-
alization methods may find it easier to better focus their further
efforts.
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