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Abstract: The paper presents a multiobjective optimization approach to process parameter
optimization in continuous casting of steel, which is the most widely used steel production
process. The optimization task is to find parameter values such that the target values of the
empirical metallurgical optimization criteria are approached as closely as possible, since this in
turn results in high quality of the cast steel. The problem is being solved with a multiobjective
evolutionary algorithm coupled with a numerical simulator of the casting process. The resulting
trade-o↵ solutions are visualized to support decision-making about the preferred solutions.
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1 INTRODUCTION

Contemporary material production strongly depends on numerical methods and computer sup-
port. Numerical simulators are a prerequisite for performing computer experiments and enable
insight into process evolution. Moreover, coupled with e�cient optimization algorithms, they
make it possible to automate process parameter optimization, improve material properties,
increase productivity and reduce production costs.

An example of a material production process to which modern computational approaches
are being intensively applied is continuous casting of steel. Here molten steel is cooled and
shaped into various semifinished products. To produce high-quality steel, it is crucial to prop-
erly control the metal flow and heat extraction during the process execution. They depend
on several process parameters, such as the casting speed and coolant flows. However, finding
the optimal values of process parameters is hard because of several obstacles. Above all, the
number of possible parameter settings grows exponentially with the number of considered pa-
rameters, the criteria are conflicting, and on-site parameter tuning is infeasible as it may be
expensive and even dangerous. The simulator-optimizer coupling is a reasonable alternative to
deal with the problem.

In the past, a common way of solving optimization problems with multiple objectives was
to aggregate the objectives into a single cost function and solve the simplified problem with a
suitable single-objective optimization method. Nowadays it is becoming an increasingly popular
practice to address such problems in their original multiobjective form. For this purpose,
population-based metaheuristics capable of finding sets of trade-o↵ solutions in a single run,
such as evolutionary algorithms and particle swarm optimizers, are typically used.

In this paper we report on multiobjective optimization of process parameters on a steel
casting machine where the task is to find parameter settings that maximize the quality of
the cast steel given the empirically defined quality indicators. An optimization environment
consisting of a numerical process simulator and an evolutionary-algorithm-based optimizer,
equipped with result visualization capability, was developed and installed at a steel plant
where it was evaluated in continuous casting of a selected steel grade. The paper introduces
the related work, presents the optimization problem, reports on the experimental setup and
the obtained results, and, in the conclusion, summarizes the study and suggests future work.
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2 RELATED WORK

Evolutionary multiobjective optimization algorithms (EMOAs) are widely used in industry to
optimize various devices and processes. A comprehensive literature survey on the applications
of EMOAs in materials science and engineering is presented in [1]. Here we focus on the
optimization problems related to continuous steel casting process. The purpose of optimization
is to find parameter settings (controls) that result in improved steel quality, reduced defects,
minimized bulgings, or optimize specific parameters, such as the lubrication index and peak
friction. If the constraints describing the technological requirements result in an empty set of
feasible controls, the optimization problem is usually reformulated into finding a control that
violates the constraints as little as possible.

To obtain high-quality cast steel, various algorithms and approaches are applied to di↵erent
(sub)sets of process parameters. In [5], the authors used multiobjective ant-colony system to
optimize the billet surface temperatures and the length of the liquid core. Both objectives
were calculated as a di↵erence between the actual and the target values. Additional examples
of optimizing the casting process performance are presented in [9] and [10] where a genetic
algorithm employing a knowledge base of operational parameters is used.

In [3], two variants of an evolutionary algorithm (generational and steady state) and the
downhill-simplex method were applied to significantly improve the manual settings of coolant
flows. The work continued in [4] where the core length and temperature deviations in the casting
process were optimized with an EMOA called DEMO [8]. On a similar problem exhaustive
search and DEMO were evaluated with various discretization steps for parameter settings [6].
The results, analyzed in view of e↵ectiveness and e�ciency, showed that the most suitable way
to solve such optimization problems is to apply a stochastic optimization approach on the finest
reasonable discretization.

3 OPTIMIZATION PROBLEM

Continuous casting of steel is a complex metallurgical process that starts with molten steel
being transported from an electric furnace and poured into the ladle and further led through
the tundish which serves as a bu↵er for the liquid steel. The material flow continues into the
mold. Cooling water flowing through the channels in the walls of the mold extracts heat from
steel and initiates its solidification. Liquid steel with a thin solid shell, called the strand, exits
the base of the mold and enters the cooling chamber where it is supported by water-cooled
rollers and sprayed with water from the wreath and spray cooling systems. Heat extraction
and solidification continue, and at the exit from the casting machine solidified steel is cut into
billets of the desired length.

The quality of the cast steel depends on appropriate process control, specifically, on proper
tuning of the process parameters. According to the empirical knowledge from steel produc-
tion, the crucial process parameters include the casting speed, the change of the mold coolant
temperature, and the coolant flows in the wreath and spray systems. On the other hand, the
three key indicators of the process suitability and, consequently, the expected steel quality, are
the length of the liquid core in the strand, known as the metallurgical length, the thickness of
the solid shell at the mold exit, and the strand surface temperature at the unbending point.

Based on these observations, we formulated a multiobjective optimization problem, involv-
ing input variables (process parameters), output variables (quality indicators), and the desired
output values. Both input and output variables are also provided with their boundary con-
straints. The task is to find the input variable settings resulting in the values of output variables
as close as possible to the desired values.

Formally, given N input variables and M output variables, feasible solutions are the ones
that satisfy the boundary constraints for each input variable xi, xmin

i  xi  x

max

i , i = 1, . . . , N ,
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Table 1: Input variables, their boundary constraints and discretization steps.

Variable Lower bound Upper bound Discretization
Casting speed [m/min] 1.0 1.2 0.01
Change of the mold coolant temperature [�C] 5 9 1
Wreath system coolant flow [l/min] 20 40 5
Spray system coolant flow [l/min] 40 70 5

Table 2: Output variables, their bounds and desired values.

Variable Lower bound Upper bound Desired value
Metallurgical length [m] 10 12 10.5
Shell thickness [mm] 11 17 14
Surface temperature [�C] 1100 1140 1120

and each output variable yj , ymin

j  yj  y

max

j , j = 1, . . . ,M . Provided that an output variable
is feasible, the corresponding optimization criterion (objective) fj 2 [0, 1] is defined as

fj =
|yj � y

⇤
j |

y

max

j � y

min

j

, (1)

where y⇤j is the desired vaue of yj . The goal of otimization is to find the values of input variables
that minimize the objectives.

4 EXPERIMENTAL SETUP

The above problem formulation was applied to the continuous casting process conducted at a
specific steel plant where the considered steel grade was 70MnVS4. The optimization problem
was approached using an integrated simulator-optimizer software environment named VizEMO-
Steel [11]. As a simulator a numerical model of the steel casting process [12] was used, and
the optimization procedure was the Di↵erential Evolution for Multiobjective Optimization
(DEMO) algorithm [8].

Given the values of input variables together with their boundary constraints and discretiza-
tion steps (as listed in Table 1), the simulator numerically evaluates the casting process and
returns the values of output variables. They are shown in Table 2 together with their lower
and upper bounds and desired values as provided by engineers at the plant. Each output value
is checked for satisfying the boundary constraints and, if feasible, mapped into a corresponding
objective value according to Eq. 1.

DEMO is a population-based algorithm designed for numerical multiobjective optimization.
It assumes candidate solutions are encoded as real-valued vectors and creates new solutions
from the existing ones using vector addition and scalar multiplication. After creation of a
candidate, the candidate and its parent are compared using the Pareto dominance relation. If
the candidate dominates the parent, it replaces the parent in the current population. If the
parent dominates the candidate, the candidate is discarded. Otherwise, when the candidate
and its parent are incomparable, the candidate is added to the population. After constructing
candidates for each parent individual in the population, the population size possibly exceeds
the predefined value. In this case, the population is truncated to the original size using the
nondominated sorting procedure and the crowding distance metric known from NSGA-II [2].

The algorithm parameter values in this study were as follows: population size 50, number
of solution evaluations 3000, scaling factor 0.5, and crossover probability 0.3.
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5 RESULTS

This section presents and discusses the results of the performed optimization experiment. Fig-
ure 1(a) shows the value of the hypervolume indicator over 60 generations of the algorithm
execution. We can see that the algorithm is able to converge rather quickly to a hypervolume
value that is close to the best value achieved. After generation 30 only minor improvements
in the hypervolume indicator can be observed. This implies that in order to save some time
without significantly deteriorating the results, we could have stopped the algorithm earlier.
Note that the entire run (3000 sequential solution evaluations) took approximately 6.5 days on
a 1.9-GHz Intel Xeon server with 32 GB RAM.
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Figure 1: Final results: (a) algorithm performance in terms of the hypervolume indicator and (b)
resulting nondominated solutions in the objective space.

Of the 3000 explored solutions, 2090 were feasible and 282 mutually nondominated. The
latter are presented in Figure 1(b). The nondominated solutions form three distinct ’strips’
in the objective space, which is caused by the discretization of input variables. Figure 2(a)
reveals that the shorter strip is actually longer, but only its small part consists of nondominated
solutions. Intrigued by the fact that these strips of solutions cross each other in the objective
space, we visualized all solutions also in the output variable space. The resulting plot can
be seen in Figure 2(b). The solutions are again positioned in strips, but they appear more
parallel, which better fits the physics behind the steel casting process. Clearly, the shape of
the nondominated front depends on the calculation of objectives from the output variables.

Finally, Figure 3 presents all nondominated solutions in the parallel coordinates plot, which
connects the values of the input and output variables for each solution. By interacting with
this plot, it is easy to see that the three strips containing nondominated solutions correspond
to three di↵erent values of the input variable ’Change of the water temperature in the mold’.
The parallel coordinates plot is of great help to the decision maker when (s)he needs to select
the preferred solutions out of all nondominated ones.

6 CONCLUSION

Quality standards in the steel industry are becoming increasingly stringent, and in continuous
casting of steel optimization of process parameters is crucial for achieving high product quality.
At contemporary steel plants this optimization is carried out through virtual experimentation
involving numerical simulators of the production process and advanced optimization techniques.
In this study, the traditional single-objective treatment of the problem that involves multiple

102



 0
 1

 2
 3  0

 1
 2

 3
 4

 5
 6

 0
 10
 20
 30
 40
 50
 60
 70

Explored solutions
Feasible solutions

Nondominated solutions

Deviation from desired 
metallurgical length [m]

Deviation from desired 
shell thickness [mm]

Deviation from desired 
surface temperature [°C]

 9
 10

 11
 12

 13
 14

 8 10 12 14 16 18 20

 1060
 1080
 1100
 1120
 1140
 1160

Explored solutions
Feasible solutions

Nondominated solutions

Desired
metallurgical

length [m]
Desired shell

thickness [mm]

Desired surface
temperature [°C]

(a) objective space (b) output variable space

Figure 2: All explored, feasible and nondominated solutions in the (a) objective and (b) output variable
space.

Figure 3: Screenshot of the parallel coordinates plot from VizEMO-Steel showing the connection
between input and output variables for the nondominated solutions. Emphasized (blue) solutions cor-
respond to value 8.0 of the input variable ’Change of the water temperature in the mold’.

criteria was replaced with multiobjective optimization as performed by an iterative population-
based technique. Specifically, the DEMO algorithm coupled with a numerical process simulator
was deployed in tuning critical process parameters with respect to three indicators of the prod-
uct quality. The study assumes steady-state process conditions, where the optimization results
are mainly intended to analyze the process and evaluate the casting machine performance, and
not control the process itself.

The simulator-optimizer environment was equipped with a visualization tool and experi-
mentally installed at a steel plant. As illustrated in this paper for a specific steel grade, the
resulting approximation sets of Pareto optimal fronts o↵er an informative insight into process
properties and, when appropriately visualized, support decision making about the final param-
eter setting to be applied. The decision depends on the user preferences that may change from
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one order to another.
As a key direction for future work, the presented optimization environment will be extended

by involving a surrogate model to reliably approximate the process at a significantly lower com-
putational cost than the currently used numerical simulator. This will increase the e�ciency
of the optimization procedure, which is an imperative for its regular deployment in practice.
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