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Abstract Numerical experiments in optimizing secondary coolant flows on a steel casting
machine with respect to multiple objectives were performed using the recently
proposed Differential Evolution for Multiobjective Optimization (DEMO). Cal-
culations were done for a selected steel grade under the assumption of steady-state
caster operation. Their aim was to find suitable sets of coolant flow settings un-
der conflicting requirements for minimum temperature deviations and predefined
core length in the caster. In contrast to solutions produced in single-objective op-
timization, approximation sets of Pareto optimal fronts provide more information
to a plant engineer and allow for better insight into the casting process behavior.

Keywords: Continuous casting of steel, Coolant flows, DEMO, Differential evolution,Mul-
tiobjective optimization, Process parameters

1. Introduction

Like the majority of modern production processes, material production and
processing nowadays strongly rely on numerical analysis and computer sup-
port. Numerical simulators enable insight into process development, allow for
execution of numerical experiments and facilitate manual process optimiza-
tion. Moreover, reliable process simulators and efficient optimization proce-
dures make it possible to automate process parameter optimization and improve
material properties. A way of achieving these goals is to couple the process
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simulator with an optimization algorithm via a cost function which allows for
automatic assessment of the simulation results.

Continuous casting of steel is an example of a process to which novel compu-
tational approaches have been applied intensively over the last years toenhance
product characteristics and minimize production costs. In this complex metal-
lurgical process molten steel is cooled and shaped into semi-manufactures.To
cast high quality steel, it is important to properly control the metal flow and heat
transfer during the process. They depend on numerous parameters, including
the casting temperature, casting speed and coolant flows. Finding optimal val-
ues of process parameters is hard since various, often conflicting criteria need
to be applied, the number of possible parameter settings is high, and parame-
ter tuning through real-world experimentation is not feasible because of safety
risk and high costs. Techniques applied to overcome these difficulties include
knowledge-based heuristic search [2] and evolutionary algorithms [1, 6, 8, 9].
However, the predominant optimization approach taken in the applied studies
so far was to aggregate multiple criteria into a single cost value and solve the
optimization problem empirically using the simulator-optimizer coupling.

In this paper we report on preliminary numerical experiments in optimizing
secondary coolant flows on a steel casting machine with respect to multiple
objectives using a multiobjective optimization evolutionary algorithm. Calcu-
lations were done for a selected steel grade under the assumption of steady-state
caster operation. Their purpose was to get better insight into process behavior
and find optimized sets of coolant flow settings under conflicting objectives.
The paper describes the optimization task and the multiobjective optimization
approach, and reports on the performed numerical experiments and obtained
results.

2. The Optimization Task

In continuous casting, liquid steel is poured into a bottomless mold which is
cooled with internal water flow. The cooling in the mold extracts heat from the
molten steel and initiates the formation of a solid shell. The shell formation is
crucial for the support of the slab behind the mold exit. The slab then entersinto
the secondary cooling area in which it is cooled by water sprays. The secondary
cooling region is divided into cooling zones where the amount of the cooling
water can be controlled separately.

In this study we consider a casting machine with the secondary cooling area
divided into nine zones. In each zone, cooling water is dispersed to the slab at
the center and corner positions. Target temperatures are specified forthe slab
center and corner in every zone. Water flows should be tuned in such a way that
the resulting slab surface temperatures match the target temperatures as closely
as possible. From metallurgical practice this is known to reduce cracks and
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inhomogeneities in the structure of the cast steel. Formally, cost functionc1 is
introduced to measure deviations of actual temperatures from the target ones:

c1 =

NZ∑

i=1

|T center
i − T center∗

i |+
NZ∑

i=1

|T corner
i − T corner∗

i |, (1)

whereNz denotes the number of zones,T center
i andT corner

i the slab center and
corner temperatures in zonei, andT center∗

i andT corner∗
i the respective target

temperatures in zonei.
There is also a requirement for core length,lcore, which is the distance be-

tween the mold exit and the point of complete solidification of the slab. The
target value for the core length,lcore∗, is prespecified, and the actual core length
should be as close to it as possible. Shorter core length may result in unwanted
deformations of the slab as it solidifies to early, while longer core length may
threaten the process safety. We formally treat this requirement as cost function
c2:

c2 = |lcore − lcore∗|. (2)

The optimization task is to minimize bothc1 andc1 over possible cooling
patterns (water flow settings). It is known that the two objectives are conflicting,
hence it is reasonable to handle this optimization problem as a multiobjective
one. Water flows cannot be set arbitrarily, but according to the technological
constraints. For each zone, minimum and maximum values are prescribed for
the center and corner water flows.

A prerequisite for optimization of this process is an accurate numerical sim-
ulator, capable of calculating the temperature field in the slab as a function of
process parameters and evaluating it with respect to cost functions Eqn.(1)
and Egn. (2). For this purpose we used the mathematical model of the process
with Finite Element Method (FEM) discretization of the temperature field and
the corresponding nonlinear equations solved with relaxation iterative methods,
already applied in previous single-objective optimization study of the casting
process [7].

3. Multiobjective Optimization

3.1 Pareto Optimality

Consider the multiobjective optimization problem (MOP) of finding the min-
imum of the cost functionc:

c : X → Z

c : (x1, . . . , xn) 7→ (c1(x1, . . . , xn), . . . , cm(x1, . . . , xn)),

whereX is ann-dimensional decision space, andZ ⊆ R
m is anm-dimensional

objective space (m ≥ 2). The objective vectors fromZ can be partially ordered
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using the concept ofPareto dominance: z
1 dominatesz2 (z1 ≺ z

2) iff z
1 is not

worse thanz2 in all objectives and better in at least one objective. When the
objectives are conflicting, there exists a set of optimal objective vectors called
Pareto optimal front. Each vector from the Pareto optimal front represents a
different trade-off between the objectives and without additional information
no vector can be preferred to another.

With a multiobjective optimizer we search for anapproximation setthat
approximates the Pareto optimal front as well as possible. When solving MOPs
in practice it is often important to provide the user with a diverse choice of trade-
offs. Therefore, beside including vectors close to the Pareto optimal front, the
approximation set should also contain near-optimal vectors that are as distinct
as possible.

3.2 DEMO

Finding a good approximation set in a single run requires a population-
based method. Consequently, evolutionary algorithms have been frequently
used as multiobjective optimizers [3]. Among them, the recently proposed
Differential Evolution for Multiobjective Optimization (DEMO) [11] is applied
in optimizing the described metallurgical process.

DEMO is based on Differential Evolution (DE) [10], an evolutionary algo-
rithm for single-objective optimization that has proved to be very successful in
solving numerical optimization problems. In DE, each solution is encoded as
ann-dimensional vector. New solutions, also called candidates, are constructed
using operations such as vector addition and scalar multiplication. After the
creation of a candidate, the candidate is compared with its parent and the best
of them remains in the population, while the other one is discarded.

Because the objective space in MOPs is multidimensional, DE needs to be
modified to deal with multiple objectives. DEMO is a modification of DE
with a particular mechanism for deciding which solution should remain in the
population. For each parent in the population, DEMO constructs the candidate
solution using DE. If the candidate dominates the parent, it replaces the parent
in the current population. If the parent dominates the candidate, the candidate
is discarded. Otherwise, if the candidate and its parent are incomparable,the
candidate is added to the population. After constructing candidates for each
parent individual in the population, the population has possibly increased. In
this case, it is truncated to the original size using nondominated sorting and
crowding distance metric (as in NSGA-II [4]). This steps are repeated until a
stopping criterion is met.

DEMO is a simple but powerful algorithm, fully presented in [11] in three
variants. Throughout this paper, the elementary variant, called DEMO/parent,
is used.
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4. Experiments and Results

4.1 Experimental Setup

Numerical experiments in multiobjective optimization of the casting process
were performed for a selected steel grade with the slab cross-section of1.70 m
× 0.21 m. Candidate solutions were encoded as 18-dimensional real-valued
vectors, representing water flow values at the center and corner positions in 9
zones of the secondary cooling area. Search intervals for cooling water flows
at both center and corner positions in zones 1, 2 and 3 were between 0 and
50 m3/h, while in the zones 4–9 between 0 and 10 m3/h. Table 1 shows the
prescribed target slab surface temperatures. The target value for thecore length
lcore∗ was 27 m.

Table 1. Target surface temperatures in◦C.

Zone number 1 2 3 4 5 6 7 8 9

Center position 1,050 1,040 980 970 960 950 940 930 920
Corner position 880 870 810 800 790 780 770 760 750

DEMO was integrated with the numerical simulator of the casting process
into an automated optimization environment. DEMO evolved sets of candidate
solutions in search for a good approximation set, and the simulator served asa
solution evaluator. Steady-state operation of the casting machine was assumed
and optimization performed in the off-line manner.

The most limiting factor for experimental analysis is the computational com-
plexity of the casting process simulation. A single simulator run takes about
40 seconds on a 1.8-GHz Pentium IV computer. In initial experimentation we
found DEMO runs with 5,000 solution evaluations (and therefore taking about
55 hours) well compromising between the execution time and solution quality.
Further algorithm settings were also adopted according to the initial parameter
tuning experiments [5] and were as follows: population size 50, number of
generations 100, scaling factor 0.5 and crossover probability 0.05.

4.2 Results and Discussion

The primary result of this study were approximation sets of Pareto optimal
fronts. Figure 1 shows the approximation sets found by DEMO for five cast-
ing speeds, ranging from 1.0 m/min to 1.8 m/min. Each set of nondominated
solutions is the final result of a single DEMO run at a constant casting speed.

We can observe that the two objectives are really conflicting in the sense
that finding a minimum for one of them the optimization procedure fails to do
so for the other and vice versa. It is also obvious that the casting speed has a
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Figure 1. Nondominated solutions found with DEMO for different casting speeds. The dashed
horizontal line denotes the maximum allowed deviation of the core length fromthe target value
(7 m).

decisive impact on the result. Moreover, the higher the casting speed, themore
the two objectives can be met simultaneously. This corresponds with practical
experience on the considered casting machine, where the process is easier to
control at the usual casting speed (1.6–1.8 m/min). Lower casting speed is
clearly shown as disadvantageous and in practice it is only set exceptionally,
for example, when a new batch of steel is awaited.

A detailed analysis of the solution properties also reveals that, in view of
the objectivec1, the majority of actual surface temperatures are higher than
the target temperatures, while regardingc2, the actual core length is almost
always shorter than the target value. Unexpectedly, the deviation is sometimes
even greater than 7 m, meaning that the actual core length is less than 20 m,
which is unacceptable. This threshold value is shown in Figure 1 and should
be considered as an additional constraint in future studies.

Looking into decision space, one can also observe certain rules. In case
of applying trade-off solutions from the middle of the approximation sets, the
amount of coolant spent increases with the casting speed (see the left-hand side
diagrams in Figures 2–6). This is an expected result as higher casting speed
implies more intense cooling. On the other hand, the distributions of tempera-
ture differences across the secondary cooling zones (right-hand side diagrams
in Figures 2–6) exhibit two characteristics. First, the target temperatures are
much more difficult to achieve at the center than in the corner slab positions.
Second, the differences at the center are rather non-uniform. While some are
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close to zero, others reach up to 200◦C at lower casting speeds. Such a situation
is not wanted in practice calls for reformulation of objectivec1.
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Figure 2. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.0 m/min:c1 = 740◦C, c2 = 8.5 m.
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Figure 3. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.2 m/min:c1 = 915◦C, c2 = 4.5 m.

Finally, it is worth checking the extreme solutions from an approximation
set at a given casting speed. Figures 7 and 8 clearly show how one objective
is met at the expense of the other. None of these would normally be used
in practice. Instead, a plant engineer would rather select a trade-off setting
balancing between the two objectives.

5. Conclusion

Optimization of process parameter settings in continuous casting of steel
is a key to higher product quality. Nowadays it is often performed through
virtual experimentation involving numerical process simulators and advanced
optimization techniques. In this preliminary study of optimizing 18 cooling
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Figure 4. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.4 m/min:c1 = 537◦C, c2 = 2.9 m.
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Figure 5. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.6 m/min:c1 = 247◦C, c2 = 1.5 m.
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Figure 6. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.8 m/min:c1 = 80◦C, c2 = 0.2 m.

water flows for an industrial casting machine the multiobjective optimization
was brought into play.
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Figure 7. The leftmost solution from the approximation set for the casting speed speed of 1.4
m/min: c1 = 85◦C, c2 = 5.6 m.
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Figure 8. The rightmost solution from the approximation set for the casting speed speed of
1.4 m/min:c1 = 1,419◦C, c2 = 0.0 m.

The analysis assumes steady-state process conditions, hence the resultsare
not primarily intended for control purposes but rather for better understanding
of the process and evaluation of the casting machine performance. The resulting
approximation sets of Pareto optimal fronts indeed offer a more general view of
the process properties. The results support some facts already knownin practice
and, at the same time, show critical points, such as the need to reformulate the
temperature deviation criterion to ensure uniform distribution of temperature
differences over the zones, and extend the optimization problem definition with
an additional constraint. From the practical point of view, further studieswill
also explore how much the optimization results are affected by the factors that
were kept constant so far, such as steel grade, slab geometry and casting machine
characteristics.
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