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Jǒzef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

Email: bogdan.filipic@ijs.si, tea.robic@ijs.si

Abstract— In continuous casting of steel a number of param-
eters have to be set, such as the casting temperature, casting
speed and coolant flows, that critically affect the safety, quality
and productivity of steel production. We have implemented an
optimization tool consisting of an optimization algorithm and
a casting process simulator. The paper describes the process,
the optimization task, and the proposed optimization approach,
and shows illustrative results of its application on an industrial
casting machine where spray coolant flows were optimized. In
the comparative study two variants of an evolutionary algorithm
and the downhill simplex method were used, and they were all
able to significantly improve the manual setting of coolant flows.

I. I NTRODUCTION

Like most other production processes, manufacture and pro-
cessing of materials are under strong market-driven pressure
for shortening the process development time, reducing exper-
imental costs, improving material properties, and increasing
productivity. In achieving these goals, numerical analysis is
playing an increasingly important role. Material scientists and
engineers in fact consider empirical knowledge and com-
putational approximation as the basis for material process
design and control. Numerical simulators give insight into
process evolution, allow for execution of virtual experiments
and facilitate manual optimization by trial and error. The
optimization procedure can be automated by connecting a
simulator with an optimization algorithm and introducing a
quality function which allows for automatic assessment of the
simulation results.

The principle goal of material process optimization is to
ensure the desired properties of the material being processed
while taking into account technical and economical limitations.
The underlying assumption is that the material properties
depend on certain process parameters, hence we may redefine
the optimization task as search for parameter values such that
the resulting material properties would be as close to the
desired as possible [1].

Automation of the optimization procedure requires three
components: a process simulator, an optimization algorithm
and a quality function. Given the values of process parameters,
the simulator models the process evolution and delivers the
quantities for evaluation of the objectives. The simulation
procedure is usually implemented as a numerical approxima-
tion solver for conservation equations of quantities, such as

temperature, stress and flow, which determine the material
governing laws. These calculations may refer to complex
three-dimensional geometries and are usually computationally
expensive. However, simulators of this type are now a firmly
established tool of material and component manufacture. They
usually enable visualization of three-dimensional data reflect-
ing the current status of the process, and investigation of the
effects of various parameter settings on objective quantities.

The quality function, also called objective function or cost
function, is used to evaluate the current parameter values
based on the results delivered by the process simulator. The
simulator data usually needs to be aggregated and required
objective quantities extracted before the evaluation takes place.
In general, the objective function incorporates material laws
and process constraints and is most often constructed by the
material engineer.

The optimization algorithm receives the evaluation result
and suggests process parameter values to be evaluated in the
next iteration. The automatic process optimization environ-
ment operates in this manner until the quality function reaches
an extreme value. The procedure should be effective and
efficient, and the critical question here is which optimization
algorithm to use. Unfortunately, the answer to this question is
problem-specific and requires the knowledge on the properties
of the solution space as well as on the optimization algorithms.

While numerical simulators are widely applied in practical
material process design and control, not many automatic
optimization systems have been developed and employed so
far. This situation is in part because of the complexity of
the task and in part because interdisciplinary collaboration of
material scientists and experts in numerical optimization is
required, which we have not witnessed until recently. Over
the last years, however, several advanced computer techniques
have been used in attempts to enhance the process perfor-
mance and product characteristics. Cheung and Garcia [6],
for example, combine a numerical model of the process with
an artificial intelligence heuristic search technique linked to
a knowledge base to find parameters values that result in
defect-free billet production. Chakraborti and coworkers [4]
report that genetic algorithms have proved to be the most
suitable for optimizing the settings of the continuous casting
mold. They use a Pareto-converging genetic algorithm to
solve a multi-objective problem of setting the casting velocity



in the mold region. In a further study [5] relying on heat
transfer modeling, genetic algorithms are used to determine the
maximum casting speed and solidified shell thickness at the
mold exit. Finally, Oduguwa and Roy [12] use a novel fuzzy
fitness evaluation in evolutionary optimization and apply it in
rod rolling optimization. They solve a multi-objective problem
of optimal rod shape design.

Our work in material process optimization is focused on
continuous casting of steel and dates to 1996 when an exper-
imental version of the optimization system was implemented
for the Slovenian steel plant Acroni [7]. Its purpose was to
find process parameter values that would result in as high
as possible quality of continuously cast steel. The system
consisted of a numerical simulator of the casting process
[13] and an evolutionary algorithm for numerical optimization.
The automated optimization approach was able to deliver
improved parameter settings that were later verified at the
plant. However, using a simple implementation of an evolu-
tionary algorithm, it spent thousands of parameter evaluations
to find high-quality solutions. As the time aspect is critical,
the purpose of further exploration presented in this paper is
not only to find good solutions applicable in practice but also
to find them with minimum number of evaluations.

The paper is further organized as follows. Section II de-
scribes the process of continuous casting of steel and explains
the concept of assuring the product quality through metallurgi-
cal cooling criteria. Section III presents the simulation-based
optimization system. In Section IV the performance of the
optimization system is illustrated on coolant flow tuning for
an industrial continuous casting machine. A comparative study
is done using a generational and steady-state evolutionary
algorithm and the traditional downhill simplex optimization
method, and the results are compared with the manual setting
used previously at the plant. The paper concludes with a
summary of the work done and results achieved, and provides
future research directions.

II. CONTINUOUS CASTING OF STEEL

A. Process Description

Continuous casting is a steelmaking technology that is
nowadays used to produce the vast majority of steel semifin-
ished products worldwide. It is a complex metallurgical pro-
cess where molten steel is cooled and shaped into semi-
manufactures of desired dimensions.

The main components of the casting system are the ladle,
tundish, mold, and the cooling subsystems. The ladle is a
transfer vessel used for moving batches of liquid steel from
a steelmaking furnace into the tundish. The tundish holds
steel while casting is carried out. It is preheated to enable
easier control of the steel temperature. Its most important
function is to ensure the continuity of steel flow into the mold.
The mold is the heart of the casting system. It extracts heat
from the liquid steel and initiates the formation of a solid
shell on the slab coming out of the mold. When operating,
the mold oscillates to prevent the steel from sticking to the
copper-alloy plates of the mold. Heat extraction is performed

by coolant flowing through the channels built in the mold.
This represents the primary cooling subsystem of the caster.
The heat extraction and solidification continue as the slab,
led by support rolls, passes through the caster. Along the
slab water sprays are located, which form the secondary
cooling subsystem. Cooling in this region results in complete
solidification, and the solidified slab is finally cut into pieces
of the ordered lengths. The process is schematically shown in
Fig. 1.

B. Product Quality and Metallurgical Cooling Criteria

The continuous casting process is subject to various safety,
quality, productivity and environmental requirements, but
product quality is among the primary concerns of competing
steel producers. The quality of continuously cast steel is deter-
mined with respect to the desired composition and cleanliness
of the melt, the required shape and surface smoothness of the
products, and the degree of cracking and segregation [3].

Control of fluid flow and heat transfer are crucial to the
achievement of product quality and associated productivity in
continuous casting of steel [9]. The experience gained in the
process control over the last decades has evolved into empirical
metallurgical cooling criteria. They restrict variations in the
slab temperature field to assure desired product characteristics.
Examples of the criteria include:

• maximum depth of the liquid pool,
• maximum cooling rate of the slab surface in the spray

cooling zone,
• maximum reheating rate of the slab surface in the spray

cooling zone,
• minimum slab surface temperature in unbending point,
• maximum negative deviation of the slab surface temper-

ature in the spray cooling zone, and
• maximum positive deviation of the slab surface temper-

ature in the spray cooling zone.

They were originally proposed by Laitinen [10] and are
being gradually accepted into metallurgical practice. The em-
pirical cooling criteria can be fulfilled by properly setting
the parameters of the continuous casting process, such as
the casting temperature, casting speed, coolant temperatures
and flows, etc. However, tuning the process parameters is a
demanding task, since the number parameters is high (usually
between 20 and 30), and the criteria pose conflicting require-
ments for their values. In addition, parameter tuning based on
real-world experimentation is infeasible because of the costs
and safety risks. Alternatively, the process can be assessed
and checked for possible improvements through a numerical
optimization procedure.

III. S IMULATION -BASED OPTIMIZATION OF THE CASTING

PROCESS

To search for process parameter settings that would result
in higher product quality, we have designed an integrated
optimization environment originally consisting of a numerical
simulator of the casting process and an evolutionary algorithm
for numerical optimization [7], [8], [14]. The integrated system
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Fig. 1. Continuous casting of steel

operates autonomously: the evolutionary algorithm navigates
the search through the parameter space and invokes the
simulator to evaluate the parameter settings, while, given the
parameter values, the simulator computes the temperature field
in the slab and assesses the metallurgical cooling criteria.

The simulator employs detailed models of heat transfer
mechanisms, contains a material properties database for var-
ious types of steel, and uses an iterative numerical method
to compute the temperature field. The built-in heat transfer
mechanisms include heat transfer to the mould, to the spray
coolant in the secondary cooling zone, to the support rolls,
and to the rolls stagnant and running water.

The simulator employs a finite volume method with Crank-
Nicolson time discretization and Voller-Swaminathan iteration
strategy to compute the temperature distribution in the slab.
Using this iterative approach, a temperature field of approx-
imately 10 million points is typically generated. From this
data, values of the empirical metallurgical criteria are derived
based on the analytical formulation of the criteria [13]. Finally,
an overall measure of the caster performance is obtained as a
weighted sum of the normalized values of the the metallurgical
criteria ci, i = 1, . . . , Nc:

f =
Nc∑

i=1

wi
ci − cmin

i

cmax
i − cmin

i

(1)

that needs to be minimized. HereNc is the number of
the involved criteria,wi are empirically determined weights

denoting the importance of the criteria, andcmin
i andcmin

i the
lower and upper bounds for thei-th criterion that are obtained
in an initial series of simulator runs. Once the optimization
procedure converges, the resulting parameter values are passed
to the caster control system that generates appropriate control
signals for the casting device.

IV. EMPIRICAL EVALUATION IN COOLANT FLOW

OPTIMIZATION

A. Experimental Setup

The evolutionary approach to process parameter setting was
experimentally applied at the Acroni steel plant in continuous
casting of construction steel AC-0113. The computation was
performed for a slab with the cross-section of 1.03 m x
0.20 m. Out of more than 20 influential process parameters,
12 spray coolant flows were subject to optimization. The six
metallurgical cooling criteria listed in Subsection II-B were
considered and the task was to check whether the manual
coolant flow setting used at the plant can be improved.
Table I shows the predefined parameter search space used in
the numerical optimization procedure. The total number of
possible parameter settings for this optimization task equals
to 512 = 244 140 625.

The iterative optimization procedure used real vector repre-
sentation of candidate solutions and was run for 400 steps
(process evaluations). Two versions of the evolutionary al-
gorithm [2] were used, generational and steady-state. They
both operated with the population size of 20 individuals. The



TABLE I

DISCRETIZED SEARCH SPACE FOR OPTIMIZATION OF SPRAY COOLANT

FLOWS IN CONTINUOUS CASTING OF STEELAC-0113

Coolant flow Min. value Max. value Step size
number [l/min] [l/min] [l/min]

1 120 160 10
2 65 85 5
3 200 280 20
4 190 270 20
5 160 240 20
6 150 230 20
7 120 160 10
8 140 180 10
9 120 160 10
10 120 160 10
11 130 170 10
12 120 160 10

operators involved to select and variate candidate solutions
were tournament selection with the tournament size 4, multi-
point crossover with probability 0.8, and uniform mutation
with probability 0.05.

For the purpose of comparison, the downhill simplex
method [11], also named the Nelder-Mead method after its
authors, was incorporated into the optimization environment
and applied to the same problem. Finally, random search
of the process parameter space was performed to obtain a
lower bound for the results of empirical optimization. With
all tested methods, the parameter space was searched in a
discrete manner, i.e. in the points prescribed by Table I. The
calculations were run on a 1.8 GHz Pentium computer and the
execution time to evaluate a single solution through numerical
simulation was 2.5 minutes.

B. Results

The optimization procedures were tested both for the so-
lution quality and repeatability of results. Fig. 2 shows the
performance traces of the tested methods averaged over five
runs and compares their results with the cost of the manual
parameter setting (denoted by the horizontal line). Table II
provides the numerical results and their statistics. It can be
seen that the resulting solutions, including the ones obtained
with random search, consistently outperformed the manual
setting of the spray coolant flows previously used in prac-
tice. Furthermore, despite their stochastic nature, the applied
optimization procedures were able to find solutions with small
deviations of both the cost values obtained according to Eq. 1
(see the standard deviation column in Table II) and the coolant
flow settings themselves.

Regarding the relative order of the methods we see that
the steady-state evolutionary algorithm outperformed the gen-
erational one which has often been confirmed on numerical
optimization problems. Roughly 300 evaluations were suffi-
cient for the steady-state evolutionary algorithm to converge
to the fittest solutions found in the numerical experiments. The
downhill simplex delivered the second best result which may

indicate that simple gradient techniques might be efficient in
searching the coolant flow parameter space, too.
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Fig. 2. Average performance of selected optimization algorithms

TABLE II

RESULT STATISTICS FOR THE TESTED OPTIMIZATION METHODS

Optimization method Best Average Worst St.dev.
Manual setting 2.2550
Random search 1.9765 1.9916 2.0226 0.0182
Downhill simplex 1.8598 1.8775 1.8879 0.0137
Generational EA 1.8638 1.8892 1.9137 0.0192
Steady-state EA 1.8587 1.8606 1.8640 0.0021

Of primary interest to process engineers at the plant were,
of course, the resulting coolant flows. It turns out that they are
generally higher than manual settings for the first half of the
sprays in the secondary cooling zone, and lower in the ending
section of the secondary cooling zone. Fig. 3 compares the best
settings found with the steady-state evolutionary algorithm and
the manual settings. The optimized settings are now under
evaluation for practical use at the plant.

V. CONCLUSION

Modern material manufacture and processing strongly relies
on numerical analysis of the related processes made possible
by powerful modeling and simulation software packages. To
use them efficiently, an upgrade is needed towards process
automatic optimization. The methodology studied in this paper
consists of a numerical process simulator and empirical opti-
mization algorithms linked with a quality function. We have
illustrated the capabilities of this scenario with optimizing the
process parameters for continuous casting of steel. Coolant
flow settings in the spray cooling zone were tuned for possible
improvement. Settings better than manual ones were found and
a comparative study of performance of various optimization
techniques was done.



Fig. 3. Manual and optimized settings of spray coolant flows for continuous
casting of steel AC-0113

The presented results should be viewed as preliminary.
Systematic tuning of algorithm parameters would probably
further improve the results and a number of additional methods
could be tried. Moreover, problem the specificities, such as
the discretization step size, also play important role in the
performance of individual methods.

Challenging questions with important practical implications
we hope to answer in the future work are how to define quality
functions for the increasing number of conflicting criteria,
and how to further reduce the number of process simulations
required in the optimization procedure.
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