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Abstract. Path planning across terrain is a fundamental challenge in
civil engineering, with applications ranging from transportation infras-
tructure to urban development. Recent advances in computational meth-
ods have enabled automated route optimization, particularly in horizon-
tal alignment problems that balance construction costs with terrain con-
straints. However, standardized comparisons of optimization approaches
across diverse geographical contexts remain limited, hindering the devel-
opment of reliable automated planning systems. Here we show through
a systematic comparative study across three European landscapes that
A* significantly outperforms RRT* in initial path generation, with bet-
ter computational efficiency and terrain adaptation, while PSO demon-
strates superior optimization capabilities compared to CMA-ES and DE
in refining these paths against roadway construction criteria. Through
extensive parameter validation, we find these performance advantages
remain consistent across different geographical contexts and topographi-
cal challenges, with the hybrid A*-PSO approach achieving significantly
better results than applying optimization algorithms to straight-line
paths alone. These findings provide a comprehensive comparison of key
algorithms in infrastructure planning optimization, demonstrating the
relative strengths of different approaches in horizontal alignment tasks.
This comparative analysis offers practical guidance for algorithm selec-
tion while highlighting opportunities for further development through
the incorporation of real-world engineering constraints.
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1 Introduction

Horizontal Alignment Optimization (HAO) is a core optimization problem in
civil engineering and transportation planning, commonly applied in the design
of linear infrastructure such as roadways and railways. It involves finding an
optimal path across a horizontal plane, represented by a 2D or 3D map. The goal
is to minimize construction costs, factoring in land acquisition, terrain features,
environmental constraints, safety, and path curvature, while ensuring compliance
with geometric standards such as maximum curvature, path length, and safety
requirements [41].

Aligning paths across complex terrains with multiple constraints demands
high computational effort, particularly when dealing with non-differentiable cost
functions. Early approaches used traditional pathfinding algorithms to gener-
ate feasible paths in controlled environments with predictable obstacles. Global
optimization techniques were also introduced early on, at first in the form of
numerical methods [47] and dynamic programming [46], but soon also through
Genetic Algorithms (GAs) in order to address non-linear, large-scale problems
in infrastructure planning [18,22]. Over time, a variety of strategies has been
developed to improve efficiency, accuracy, and complexity management in HAO.
Problem-specific challenges have also been identified and addressed with tailored
solutions.

However, this diversity has introduced a challenge: with tailored solutions
and evaluations dominating the literature, cross-comparison becomes difficult.
As a result, generalization of methods across HAO contexts is limited.

To address the need for standardized comparison, we conduct a structured
evaluation using simplified HAO scenarios based on publicly available maps. We
employ widely recognized algorithms—A-Star (A*) [16], Rapidly-exploring Ran-
dom Tree Star (RRT*) [23], Particle Swarm Optimization (PSO) [24], Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [15], and Differential Evolu-
tion (DE) [43]—without domain-specific customizations to ensure generalizabil-
ity and facilitate meaningful comparisons across optimization techniques in static
horizontal alignment. We compare the algorithms across three structured scenar-
ios: graph-based algorithms, optimization algorithms within a straight corridor,
and a hybrid approach that initializes the optimization algorithms with the path
created by A* (the best-performing graph-based algorithm). This study thereby
provides an initial reference point for evaluating the effectiveness of standard
optimization and graph-based algorithms in infrastructure planning.

2 Related Work

The Horizontal Alignment Optimization Task. There are several varia-
tions of HAO tasks, ranging from graph-based path optimization to 2D-corridor
selection, parametric tuning of curves, and complex 3D problems combining hor-
izontal and vertical alignment. The objective is often to optimize a single align-
ment with multiple constraints [22], though recent work emphasizes generating
diverse, feasible alternatives to aid infrastructure planners [34].
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Graph-Based Optimization Algorithms for Corridor Selection. Graph-
based least-cost optimization algorithms have long played an essential role in
infrastructure planning. They are easily adopted for minimal distance and obsta-
cle avoidance, features of both preliminary alignment and adaptive planning
tasks [1,7,38]. Among modern methods, A* and RRT* stand out due to their
effectiveness in static and dynamic problems, respectively. A* is effective in pre-
dictable environments, while RRT* is adapted for complex, dynamic scenarios
such as mobile robot trajectory planning [17,29]. Perhaps due to the similarities
between mobile planning and horizontal planning tasks, RRT* and its variations
are also widely applied in infrastructure planning [33,44,49].

Optimization-Only Techniques. Algorithms such as PSO, CMA-ES, and
DE are robust for single-objective optimization tasks in infrastructure planning,
including adjusting paths for energy efficiency and crowd safety [53], timetable
synchronization [12,27], and construction constraints in challenging terrains [21].
Methods from other disciplines have also been tested. Among the most successful
ones is mathematical optimization, particularly Mixed Integer Linear Program-
ming (MILP) and its variants, and the Distance Transform (DT) algorithm,
first introduced by [39] in 2006. In later years, methods like Deep Reinforcement
Learning [14] have also been used with some success.

In engineering publications, optimization methods are often customized to
address the unique needs of specific alignment problems. GAs in particular are
frequently modified to handle project-specific requirements, creating intricate
genetic representations and operations specific to the problem (see, e.g., [19,26]).
These customizations, while effective in specific scenarios, reduce the generaliz-
ability of findings and limit direct comparisons between different methods.

Hybrid Strategies: Pathfinding + Optimization. In recent years, more
general-purpose optimization techniques are finding a place as refinement tools
for initial paths in static alignment tasks. Bi-level optimization strategies use two
different optimization algorithms in sequence, e.g., to find an optimal horizontal
corridor to use for vertical optimization [30,50]. While graph-based least-cost
algorithms are not ideal for complex objective functions, they can efficiently
find promising paths which then drastically reduce the search space of more
sophisticated optimization algorithms. For instance, [49] uses RRT* to initialize
a DE optimization stage. In [40], a four-step hybrid approach is used which
mixes Dijkstra with PSO to optimize for a complex railway alignment problem.
Another paper, [32], initializes with DT and optimizes with PSO. In [45], a
variant of RRT* is used alongside Ant Colony Optimization. Hybrid methods
like these are gradually gaining popularity, but a 2023 review of HAO [41] still
identified their exploration as a gap in the current literature.

Solution Encoding. In infrastructure optimization, physical constraints like
path curvature are critical. While dynamic path planning often incorporates
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curves directly into the solution representation (see, e.g., [6,52]), HAO typically
uses lightweight representations. Solutions are stored as point lists, which are
transformed into smooth paths at evaluation [41] (for a comprehensive review of
these methods, see [36]).

Comparison Studies. Despite much modern progress in optimization and
pathfinding, comprehensive studies that evaluate and compare these methods
in standardized static alignment contexts remain limited: in [2], a comparison
was made between bi-objective optimization techniques for vertical alignment,
including three scalarization methods and two GAs, and [48] compares the use
of GAs, PSO and Nonlinear Optimization with Mesh Adaptive Direct Search
(NOMAD) for initializing the Sequential Quadratic Programming (SQP) opti-
mizer on a 3D problem. Research is shifting towards hybrid and multi-objective
approaches that better use the strong points of each optimization technique, but
consistent comparisons are still needed to make these advancements applicable
across alignment problems.

3 Methods
3.1 Path Planning Algorithms
A*. The A* algorithm [16] is a classic and widely used algorithm for pathfinding
and graph traversal that combines the properties of Dijkstra’s and Uniform-Cost-
Search [37]. As a heuristic search algorithm, it dynamically expands toward the
goal under the guidance of a heuristic function, continually seeking the most
efficient path between the start and end point. A* and its variations are particu-
larly applicable in fields such as mobile robot navigation [5,9,10] and computer
games [3,25,51].

The algorithm uses an evaluation function, f(n), defined as:

f(n) = g(n) + h(n),

where f(n) represents the total cost estimate for node n, g(n) is the actual cost
of the path from the start to n, and h(n) is the heuristic estimate of the cost from
n to the target. The heuristic must be admissible: h(n) ≤ h∗(n), where h∗(n) is
the actual optimal path cost from node n to the goal. Common heuristics include
Manhattan distance, Euclidean distance, and diagonal distance. For each current
node vn, the cost g(v′

n) for neighboring nodes v′
n is calculated using the formula:

g(v′
n) = g(vn) + c(v′

n),

where c(v′
n) is the distance between the nodes. The algorithm systematically

explores nodes by selecting the most promising candidate from the open list,
then moves it to the closed list as part of the path. It expands neighboring
nodes and updates the candidate list until the target node is added to the closed
list, at which point a complete path has been found.

Adjusted slightly for HAO, the implementation accounts for elevation dif-
ferences using an extended cost function, allows for diagonal movement, and
operates with an extended neighborhood.
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RRT*. RRT*, a cousin of A*, also incrementally builds a tree in a defined
environment [23]. Its key feature, which adapts it to dynamic or uncertain envi-
ronments, is its ability to continuously reevaluate and improve paths. If a new
branch offers a shorter path to the goal, the tree is “rewired” to best incorpo-
rate it, increasing the likelihood of finding an optimal trajectory. RRT* can be
easily extended with various heuristics and constraints, and has a prominent
presence in the fields of robotics, such as motion planning for mobile robots [35],
drones [11] and manipulators [28]. It guarantees asymptotic optimality, improv-
ing path quality as computation time increases.

In each iteration, the algorithm randomly samples a point xrand from the
configuration space and finds the nearest existing node xnearest using a distance
metric d(x1, x2). It then attempts to connect a new point xnew at a step size δ
in the direction of xrand. The best parent for xnew is identified within a neigh-
borhood radius, ensuring the path improves progressively. The path cost c(x) is
calculated as:

c(x) = c(xparent) + d(xparent, x).

After adding xnew, the algorithm attempts to rewire existing nearby nodes to
shorten the overall path, ensuring that the tree converges toward the optimal
path as n → ∞. The condition for rewiring can be expressed as:

c(xnew) + d(xnew, xnear) < c(xnear).

This enables RRT* to improve paths iteratively, making it highly effective for
complex path-planning tasks in high-dimensional spaces.

3.2 Optimization Algorithms
PSO. In Particle Swarm Optimization, a population of particles iteratively
searches for the optimal solution by adjusting their positions within a multi-
dimensional search space based on individual experiences and the collective
knowledge of the swarm [13,20,24]. The key mechanisms of the PSO algorithm
are described in two equations. The position x(t)

i , of particle i at iteration t is
updated as:

x(t+1)
i = x(t)

i + v(t+1)
i ,

where v(t+1)
i is the particle’s velocity at the next iteration. The velocity is

updated based on four factors: the particle’s current position x(t)
i , its previous

velocity v(t)
i , its previous best position p(t)

i and the global best position found
by the swarm g(t):

v(t+1)
i = w · v(t)

i + c1 · r1 · (p(t)
i − x(t)

i ) + c2 · r2 · (g(t) − x(t)
i ),

here w is the inertia weight, c1 and c2 are acceleration coefficients, and r1 and
r2 are random numbers drawn from a uniform distribution.
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CMA-ES. The Covariance Matrix Adaptation Evolution Strategy is an evolu-
tionary optimization algorithm that generates new solutions by sampling from
an evolving probability distribution [15]. A key feature of CMA-ES is its abil-
ity to learn correlations between variables, enabling efficient search even for
complex and non-separable functions. CMA-ES adapts two components during
optimization: the covariance matrix and the global step size. The covariance
matrix is updated based on evolutionary paths and the differences between the
best individuals of consecutive generations. The global step size is adjusted by
monitoring the length of consecutive steps: it increases when steps are larger
than expected and decreases if the steps are smaller. The algorithm begins with
initialization, followed by population generation and fitness evaluation. After
sorting and selecting the best individuals, the covariance matrix and step size
are updated, and the process is repeated until a stopping criterion is met.

DE. Differential Evolution is an iterative algorithm that creates new candidate
solutions by blending information from randomly selected individuals within the
current population [43]. Candidates are then compared to existing solutions,
and if they show better performance, they replace them. Its key operations are
mutation, crossover and selection.

Mutation (differential variant): At each iteration t, new solutions v are cre-
ated by combining randomly selected individuals x from the population:

v(t+1)
i = x(t)

r1 + F · (x(t)
r2 − x(t)

r3 ),

where i = 1, 2, . . . , N , and r1, r2, and r3 are distinct random indices. Here, F is
the mutation factor that scales the differential solution.

Crossover (exponential variant): Trial solutions u(t+1)
i = (u(t+1)

i,1 , . . . , u
(t+1)
i,D )

are created by mixing elements from v and x. For each element j in the solution:

u
(t+1)
i,j =

{
v
(t+1)
i,j if rand ≤ CR or j = jrand,

x
(t)
i,j otherwise,

where CR is the crossover constant, rand is a random value between 0 and 1,
and jrand is a random index, ensuring at least one element from V is included.

Selection: The better solution between the trial solution and the current
solution is retained, ensuring elitism where f(·) is the fitness function:

x(t+1)
i =

{
u(t+1)
i if f(u(t+1)

i ) < f(x(t)
i ),

x(t)
i otherwise,

where f(·) is the fitness function.
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3.3 Experiment Design

The Python code used in this work is available on Github1.

Geographical Information Model. To base this study on real-world data,
we used digital elevation maps from the OpenDEM project, produced using
Copernicus data and information funded by the European Union – EU-DEM
layers [31]. Our experiments focused on regions in Slovenia, Austria, and Italy,
selected for their diverse topographical features2. In Slovenia, we examined the
area between Deskle and Ljubljana; in Austria, the section between Lienz and
Villach; and in Italy, the path between Terni and L’Aquila. The elevation data
for these regions was downloaded in GeoTIFF format from OpenDEM, then
normalized and converted into 2D array format for analysis.

Path Planning Comparison. In the first stage, we compared the A* and
RRT* algorithms for finding paths across all maps. The goal was to identify a
foundational planning algorithm for subsequent path optimization. The compar-
ison of these algorithms is then made in the context of path length (Euclidean
distance), time computation and elevation differences along the path. The RRT*
algorithm typically works with constraints or collision objects that it must avoid,
and in our case, we introduced an altitude constraint set to 800m to improve
computational efficiency by limiting the search space. For our baseline compar-
ison we connected the start and goal points with a line segment, which is then
optimized in the next phase based on the objective function.

Path Optimization. In the second stage, paths produced by the selected path
planning algorithm and the baseline approach are further refined because they
initially fail to meet all horizontal alignment constraints—such as a clothoidal
shape and minimum turning radius. To address these limitations, optimization
algorithms like PSO, CMA-ES, and DE are applied to this constrained optimiza-
tion problem. The steps of this stage are illustrated in Fig. 1.

Starting with an initial path Pinit, we first simplify it through downsampling
with the Douglas-Peucker method3, yielding a more manageable path P with
n points. The downsampling precision is controlled by the parameter ε. Since
both Pinit and P follow the map grid and are rugged, we further smooth P using
splines of clothoid curves, with their smoothness controlled by the parameter
τ . The clothoid curves are defined by control points, which can be placed on
perpendicular cutting planes along the path P . The length of cutting planes is
determined by the Cutting Plane Factor (CPF) parameter.

1 https://github.com/Steigner/HorizAligns-Hybrid-Optimization.
2 The specific maps were Slovenia: N255E460, N255E465; Austria: N260E450,

N260E455, N260E460; Italy: N210E455, N210E460, N215E460, N215E455,
N215E450, N210E450.

3 The Douglas-Peucker method is a widely used algorithm for simplifying curves, poly-
gons or paths by eliminating points that minimally affect the overall shape [8].

https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization
https://github.com/Steigner/HorizAligns-Hybrid-Optimization


126 A. Espeseth et al.

Fig. 1. The path optimization process consists of two steps: 1) The initial path Pinit

is simplified to generate a downsampled path P , which establishes cutting planes—
line segments designated for the placement of clothoid control points. 2) Optimization
algorithms search for the optimal positioning of these control points along the cutting
planes, yielding an optimized path trajectory that satisfies the given constraint.

Optimizing the path trajectory means finding the positions of clothoid control
points that minimize the objective function:

n−1∑
i=1

‖Pi+1 − Pi‖ · (1 + wg + wt),

where ‖Pi+1 −Pi‖ represents the Euclidean distance between consecutive points
in the path P = {P1, P2, . . . , Pn}. The weights wg and wt penalize steep terrain
gradients, the mitigation of which would demand additional construction costs,
and expensive digging of tunnels, respectively:

wg =

{
2, if G > 8% or G < −8%
0, otherwise

, wt =

{
5, if T > 800m
0, otherwise

.

The constants used in these formulations were determined by a domain expert.
Additionally, to adhere to safety constraints, the solution requires that the turn-
ing radius R > 100m along the entire path. We verify this using the differential
curvature method [42].

4 Results

Graph-Based Algorithms. Our investigation revealed a striking hierarchy
of efficiency among path-planning approaches, with implications for real-world
infrastructure optimization. The comparison between A* and RRT* algorithms
proved particularly illuminating: A* demonstrated remarkable computational
efficiency, executing approximately 78 times faster than RRT* while simulta-
neously discovering paths that more naturally conformed to terrain features
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Fig. 2. Comparison of paths generated by A* and RRT* algorithms on the Slovenian
map from Deskle to Ljubljana city center, overlaid on elevation data (meters). The
A* path (red) demonstrates more direct routing compared to the RRT* path (white).
(Color figure online)

(Fig. 2). This dramatic performance difference stems from A*’s ability to leverage
terrain-aware heuristics better than RRT*, enabling it to prioritize paths through
valleys and avoid unnecessary elevation changes. Furthermore, A* exhibits favor-
able computational scaling with terrain resolution. Our experiments show that,
on average, a 10-fold increase in resolution results in only a 6.2-fold increase in
computation time, from 0.8 s to 5 s, demonstrating efficient performance.

Hyperparameter Search. This initial finding guided our hybrid optimiza-
tion strategy. Rather than pursuing parallel development of both algorithms, we
leveraged A*’s superior performance as a foundation for a deeper exploration of
path refinement. Using Weights & Biases’ Bayesian optimization framework [4],
we conducted an extensive hyperparameter search across 128 preliminary runs
on the Slovenian map, systematically exploring the parameter space for three
distinct optimization algorithms: PSO, CMA-ES, and DE.

To validate whether these parameters, optimized for the Slovenian terrain,
would generalize to different geographical contexts, we performed a comprehen-
sive grid search comprising 246 runs across three distinct geographical regions
(Slovenia, Austria, and Italy), three algorithms, three random seeds, and multi-
ple parameter combinations (Table 1). Notably, the parameter values that per-
formed well in Slovenia proved robust across all three terrains, suggesting that
our optimization approach captures fundamental aspects of the path-planning
problem rather than terrain-specific features. The results of this exploration were
unequivocal: PSO emerged as the consistently superior approach across all tested
scenarios, maintaining its performance advantage even in substantially different
geographical contexts.
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Table 1. Parameter ranges explored during Bayesian optimization using A*-initialized
paths.

Parameter Sweep RangeMost Promising ValuesSelected Values

Cutting Plane Factor [1, 5] 1, 3, 5 1
ε [0.0, 1.0] 0.6, 0.8, 1.0 1.0
τ [0.1, 1.0] 0.2, 0.4, 0.75 0.4
Population Size [20, 100] 60 60
Generation Size [5, 50] 50 50

Table 2. Fitness mean for the best CPF and across CPFs for the three stand-alone
optimization algorithms on each map. Apart from *, which used CPF 3, all top runs
used CPF 1.

Map Best CFP (n = 3) All CFPs (n = 9)
PSO CMA-ES DE PSO CMA-ES DE

Slovenia 487 490 482 501 593 604
Italy 883 895 896 984 1012 1121
Austria 1365* 1190* 1443 1428 1419 1581
Overall 912 858 940 971 1008 1102

Optimization on a Straight Corridor. We next created a baseline for the
three algorithms PSO, CMA-ES, and DE by optimizing over the straight path
from start to goal. To enable a fair comparison with the hybrid strategy, we used
the hyperparameters identified in the previous section, but allowed a re-tuning
of the CPF, as the optimal path needed to deviate quite far from the straight
line. A grid search over CPF values 1, 3 and 5 nevertheless favoured CPF 1,
i.e., the paths tightly following the original line, as can be seen in Table 2. The
overall best-performing algorithm was PSO, but the top algorithm differed for
each map, showing how the HAO task can have strong sensitivity to the choice of
algorithm when it operates on its own. Figure 3 demonstrates this descrepancy
between the best paths for each CPF on the Austrian map.

Hybrid Optimization Results. Next, we compared the performance of PSO,
CMA-ES and DE when optimizing the A* path. The optimization convergence
plots (Fig. 4) reveal several key insights. First, PSO consistently outperformed
both CMA-ES and DE across all geographical contexts, achieving better solu-
tions with fewer generations. This superiority manifested not just in final fitness
values but also in the reliability of convergence, as evidenced by the tighter
interquartile ranges in the PSO trials. Second, the relative difficulty of opti-
mization varied significantly across regions, with the Slovenian terrain proving
most amenable to optimization while the Italian landscape presented the great-
est challenge. This variation appears to be driven by topographical constraints:
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Fig. 3. Comparison of CMA-ES paths optimized with three different CPFs on the
Austrian map. As CPF increases, curves become more extreme, leading to lower fitness.
For the Austrian map, CPF 3 is just large enough to benefit from the nearby valleys,
and outperforms CPF 1.

the Italian test case includes a path where approximately half the optimal route
lies in a very narrow corridor of low altitude. In this region, even slight devi-
ations from the optimal path result in substantial fitness penalties, leading to
a more challenging optimization landscape. Notably, in these topographically
constrained sections, the optimized path closely follows the initial A* solu-
tion, suggesting that the initial path-planning phase had already identified near-
optimal routing through these challenging areas. Third, all algorithms showed
rapid initial improvement followed by diminishing returns, but PSO maintained
progress longer than its competitors. When compared to the baseline results,
the hybrid optimization consistently outperforms the baseline optimization, as
demonstrated in Table 3.

Implications. The practical implications of these findings are visualized in
Fig. 5, where we can observe how the optimized paths deviate from their A*-
initialized predecessors. The optimized routes demonstrate smoother transitions
and better adaptation to terrain features while maintaining feasible construction
constraints. This improvement is particularly evident in areas where the original
A* path made sharp turns or traversed challenging elevation changes. Since
the optimization process adjusts the cutting planes, additional turns can be
introduced along the optimized path.

Our results suggest that a two-phase approach—initial path planning with A*
followed by PSO-based refinement—represents a robust strategy for real-world
infrastructure planning. This combination effectively balances computational
efficiency with solution quality, providing a practical framework for addressing
complex routing challenges in varied geographical contexts.
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Fig. 4. Fitness progressions for optimization algorithms across different geographical
maps. Solid lines represent best fitness values per generation, while dashed lines show
average fitness. Shaded areas indicate the inter-quartile range across three independent
runs.
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Fig. 5. Comparison of initial A* paths (red) and final PSO optimized paths (white)
across three different geographical regions, showing how optimization improves path
smoothness and terrain adaptation while maintaining construction constraints. (Color
figure online)
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Table 3. Comparison of the final mean fitness values from optimization on a A* path
versus on the straight corridor. T-tests for the overall scores of the two approaches
showed them to be highly significant (p ≪ 0.01 for distinct maps, p < 0.05 overall).

Map AlgorithmHybrid Baseline

SloveniaPSO 455 ± 5.9 487 ± 13.0
CMA-ES 459 ± 15.3491 ± 4.8
DE 465 ± 0.5 482 ± 7.5
Overall 460 ± 9.1 487 ± 8.8

Austria PSO 519 ± 8.5 1365 ± 49.7
CMA-ES 529 ± 13.61190 ± 105
DE 542 ± 6.6 1443 ± 6.8
Overall 530 ± 13.21351 ± 150

Italy PSO 667 ± 8.2 884 ± 5.7
CMA-ES 697 ± 4.7 895 ± 11.3
DE 688 ± 0.8 896 ± 10.5
Overall 684 ± 14.0892 ± 10.2

Overall 558 ± 96 910 ± 369

5 Conclusions

Our comparison of path-planning and optimization algorithms for horizontal
alignment has yielded significant insights for infrastructure planning. The clear
superiority of A* over RRT* for initial route planning suggests that graph-
based approaches may be more suitable for static environments. Furthermore,
our systematic evaluation across diverse European terrains revealed that PSO
consistently outperforms both CMA-ES and DE, with parameter settings that
proved robust across different geographical contexts.

However, important limitations must be acknowledged. Our study focused
on relatively small geographical regions and simplified cost functions compared
to real infrastructure projects. The computational requirements of our approach
may increase significantly for larger-scale projects or when incorporating more
complex terrain features and constructions constraints.

Despite these limitations, our two-phase approach—combining A* for initial
path generation with PSO for refinement—offers a promising direction for prac-
tical infrastructure planning, effectively balancing computational efficiency with
solution quality. Future work could explore the method’s scalability to larger
geographical areas, incorporate multi-objective optimization for competing pri-
orities such as environmental impact and social factors, and explore more diverse
landscapes.
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