

Visualization in Multiobjective Optimization

Bogdan Filipič Tea Tušar

CEC Tutorial, Donostia - San Sebastián, June 5, 2017

Computational Intelligence Group Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia Tutorial slides are available at http://dis.ijs.si/tea/research.htm

2

Contents

Introduction

A taxonomy of visualization methods

Visualizing single approximation sets

Visualizing repeated approximation sets

Summary

References

Introduction

Introduction

Multiobjective optimization problem Minimize

 $\mathbf{f} \colon X \to F$

$$\mathbf{f}: (x_1, \ldots, x_n) \mapsto (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

- X is an *n*-dimensional decision space
- $F \subseteq \mathbb{R}^m$ is an *m*-dimensional objective space $(m \ge 2)$

Conflicting objectives \rightarrow a set of optimal solutions

- Pareto set in the decision space
- Pareto front in the objective space

Introduction

Visualization in multiobjective optimization Useful for different purposes [14]

- Analysis of solutions and solution sets
- Decision support in interactive optimization
- Analysis of algorithm performance

Visualizing solution sets in the decision space

- Problem-specific
- If $X \subseteq \mathbb{R}^m$, any method for visualizing multidimensional solutions can be used
- Not the focus of this tutorial

Introduction

Visualizing solution sets in the objective space

- Interested in sets of mutually nondominated solutions called approximation sets
- Different from ordinary multidimensional solution sets
- The focus of this tutorial

Challenges

- High dimension and large number of solutions
- Limitations of computing and displaying technologies
- Cognitive limitations

Introduction

Visualization can be hard even in 2-D Stochastic optimization algorithms

- $\cdot\,$ Single run \rightarrow single approximation set
- $\cdot\,$ Multiple runs \rightarrow multiple approximation sets

The Empirical Attainment Function (EAF) [15] or the Average Runtime Attainment Function (aRTA) [3] can be used in such cases

6

4

This tutorial is not about

- Visualization of a few solutions for decision making purposes (see [29])
- Visualization in the decision space
- General multidimensional visualization methods not previously used on approximation sets

8

This tutorial covers

- Visualization of entire sets in the objective space
 - Single approximation sets [1]
 - Repeated approximation sets [2, 3]

A taxonomy of visualization methods

Visualizing single

approximation sets

Methodology

Evaluating and comparing visualization methods

- No existing methodology for evaluating or comparing visualization methods
- Propose benchmark approximation sets (analog to benchmark problems in multiobjective optimization)
- Visualize the sets using different methods
- Observe which set properties are distinguishable after visualization

Benchmark approximation sets

Two different sets that can be instantiated in any dimension [1]

- Linear with a uniform distribution of solutions
- Spherical with a nonuniform distribution of solutions (more at the corners and less at the center)
- Sets are intertwined

Size of each set

- 2-D: 50 solutions
- 3-D: 500 solutions
- 4-D: only 300 solutions since most methods cannot handle more

10

Benchmark approximation sets

These two sets are not sufficient for all purposes!

Missing:

- A set with knees
- A set with different relations between objectives, temporarily using [13]:

- A sequence of sets mimicking convergence in time
- ... (possibly others)

12

Desired properties of visualization methods

Demonstration on the 4-D linear and spherical sets

- Preservation of the
 - Dominance relation between solutions
 - \cdot Front shape
 - $\cdot\,$ Objective range
 - Distribution of solutions
- Robustness
- Handling of large sets
- \cdot Simultaneous visualization of multiple sets
- Scalability in number of objectives
- Simplicity

Demonstration on the 12-D approximation set

Showing relations between objectives

14

Visualizing single approximation sets

Individual solutions (Visualizing solutions independently from each other) \rightarrow Showing original values of solutions

- Scatter plot matrix
- Bubble chart
- Parallel coordinates [19]
- Radar chart
- Chord diagram [22], TBA
- Heat maps [32]
- Interactive decision maps [26]

15

17

Scatter plot matrix

Most often

- Scatter plot in a 2-D space
- Matrix of all possible combinations
- m objectives $\rightarrow \frac{m(m-1)}{2}$ different combinations

Alternatively

- Scatter plot in a 3-D space
- m objectives $\rightarrow \frac{m(m-1)(m-2)}{6}$ different combinations

Scatter plot matrix

Scatter plot matrix

Bubble chart

4-D objective space

- Similar to a 3-D scatter plot
- Fourth objective visualized with point size

5-D objective space

• Fifth objective visualized with colors

	Preservation of the							
dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
×	*	1	*	1	*	1	×	1

Parallel coordinates

- m objectives $\rightarrow m$ parallel axes
- Solution represented as a polyline with vertices on the axes
- \cdot Position of each vertex corresponds to that objective value
- \cdot No loss of information

Parallel coordinates

(dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
Ē	≈	×	1	≈	1	×	×	1	1

22

Parallel coordinates

Radar chart

- Similar to parallel coordinates
- Additionally connects the two extreme coordinates
- m objectives $\rightarrow m$ radial axes
- Also called a spider chart, polar chart, star plot, ...

Radar chart

Radar chart

Heat maps

 $\cdot m$ objectives $\rightarrow m$ columns

- One solution per row
- Each cell colored according to objective value
- \cdot No loss of information

	Preservati	on of the						
dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
×	×	1	×	1	×	×	1	1

Heat maps

28

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

 \mathbf{f}_4

Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains all points in the objective space that are weakly dominated by any solution in A.

Interactive decision maps

- Visualize the surface of the EPH, not the actual approximation set
- Plot a number of axis-aligned sampling surfaces of the EPH
- \cdot Color used to denote third objective
- Fixed value of the forth objective

Interactive decision maps

30

Visualizing single approximation sets

Individual solutions (Visualizing solutions independently from each other) \rightarrow Showing transformed values of solutions

- Radial coordinate visualization [17, 39]
- 3-D Radial coordinate visualization [18], TBA
- Sin approxim (visualizing solutions independently from each other)

Showing original

alues of solutions

Showing transformed

values of solutions

- Tetrahedron coordinates model [6]
- Polar plots [16], TBA
- Hyper-radial visualization [9]
- Level diagrams [7, 8]
- Prosections [1]

Radial coordinate visualization

Also called RadViz

- Inspired from physics
- Objectives treated as anchors, equally spaced around the circumference of a unit circle
- Solutions attached to anchors with 'springs'
- Spring stiffness proportional to the objective value
- Solution placed where the spring forces are in equilibrium

Radial coordinate visualization

Tetrahedron coordinates model

- Only for four objectives
- Similar to RadViz
- Objectives treated as anchors, placed at the vertices of a regular tetrahedron
- Solutions attached to anchors with 'springs'
- Spring flexibility proportional to the objective value
- Solution placed where the forces are in equilibrium

Tetrahedron coordinates model Linear Spherical f_2 Preservation of the Handling of Simultaneous front shape objective distribution

Robustness

1

of solutions

 \approx

range

Х

×

large sets

/isualizatior

dominance

relation

X

Hyper-radial visualization

- Solutions preserve distance (hyper-radius) to the ideal point
- Distances are computed separately for two subsets of objectives
- Indifference curves denote points with the same preference

36

Scalability

X

Simplicity

1

Hyper-radial visualization

	Preservati	on of the	I alianationaliana		Handling of	Simultaneous			
relation	front snape	range	of solutions	Robustness	large sets	visualization	Scalability	Simplicity	
×	≈	1	×	1	≈	1	1	1	

Level diagrams

• m objectives $\rightarrow m$ diagrams

• Plot solutions with objective f_i on the x axis and distance to the ideal point on the y axis

Level diagrams

		Preservati	on of the						
	dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
Ì	×	*	1	×	1	*	1	1	1

Level diagrams with asymmetric norm

- Compute an asymmetric norm a (very similar to the $I_{\varepsilon+}$ indicator) between any solution and the reference point
 - $\cdot a = 0 \Rightarrow$ the solution dominates the reference point
 - + $a > 0 \Rightarrow$ the solution needs to be moved by a to dominate the reference point
- Use on our benchmark approximation sets
 - The spherical set is used as the reference set
 - $\cdot \ a=0 \Rightarrow$ the solution from the linear set dominates a solution from the spherical set
 - $a > 0 \Rightarrow$ the solution from the linear set needs to be moved by at least a to dominate one solution from the spherical set

40

38

Level diagrams with asymmetric norm

Prosections

- Visualize only part of the objective space
- Dimensionality reduction by projection of solutions in a section
- \cdot Need to choose prosection plane, angle and section width

Visualizing single approximation sets

Set properties (Visualizing solutions dependently from each other) \to Showing individual solution-based properties \to Not optimization based

- Distance and distribution charts [5]
- Pareto shells [38]
- Hyper-space diagonal counting [4]
- Treemaps [40], TBA
- Trade-off region maps [31], TBA

Distance and distribution charts

- Plot solutions against their distance to the Pareto front and distance to other solutions
- Distance chart
 - Plot distance to the nearest non-dominated solution
- Distribution chart
 - Sort solutions w.r.t. first objective
 - $\cdot\,$ Plot distances between consecutive solutions
 - For the first/last solution, compute distance to first/last non-dominated solution
 - · $k \text{ solutions} \rightarrow k+1 \text{ distances}$
- \cdot All distances normalized to [0,1]

Distance and distribution charts

Pareto shells

- Use nondominated sorting to split solutions to Pareto shells
- Represent solutions in a graph
- Connect dominated solutions to those that dominate them (we show only one arrow per dominated solution)

Pareto shells

	Preservati	ion of the				at 1.		
dominance	front shape	objective	distribution	Robustness	Handling of	Simultaneous	Scalability	Simplicity
relation		range	of solutions		large sets	visualization		
1	×	×	×	×	×	1	1	1

46

Hyper-space diagonal counting

• Inspired by Cantor's proof that shows $|\mathbb{N}| = |\mathbb{N}^2| = |\mathbb{N}^3| \dots$

- · Discretize each objective (choose a number of bins)
- In the 4-D case
 - \cdot Enumerate the bins for objectives f_1 and f_2
 - \cdot Enumerate the bins for objectives f_3 and f_4
 - $\cdot\,$ Plot the number of solutions in each pair of bins

50

Hyper-space diagonal counting

Visualizing single approximation sets

Set properties (Visualizing solutions dependently from each other) \rightarrow Showing individual solution-based properties \rightarrow Optimization based

- Principal component analysis [42]
- Sammon mapping [33, 36]
- Neuroscale [27, 11]
- Multidimensional scaling [39]
- Isomap [34, 24]
- Seriated heatmaps [39]
- Two-stage mapping [23]
- Distance-based and dominance-based mappings [12]

Principal component analysis

- Principal components are linear combinations of objectives that maximize variance (and are uncorrelated with already chosen components)
- They are the eigenvectors with the highest eigenvalues of the covariance matrix

Principal component analysis

Sammon mapping

- A non-linear mapping
- Aims to preserve distances between solutions
 - $\cdot d_{ij}^*$ distance between solutions \mathbf{x}_i and \mathbf{x}_j in the objective space
 - \cdot d_{ij} distance between solutions \mathbf{x}_i and \mathbf{x}_j in the visualized space
- Stress function to be minimized

$$S = \sum_{i < j} \frac{(d_{ij}^* - d_{ij})^2}{d_{ij}}$$

• Minimization by gradient descent or other (iterative) methods

Neuroscale

58

- Aims to minimize the same stress function as Sammon mapping
- Uses a radial basis function neural network to model the projection

Multidimensional scaling

- Classical multidimensional scaling aims at preserving similarities between solutions
- Here, dominance distance is used to measure similarity
- Two solutions are similar if they share dominance relationships with a third solution

$$S(\mathbf{a}, \mathbf{b}; \mathbf{z}) = \frac{1}{m} \sum_{i=1}^{m} \left[I((a_i < z_i) \land (b_i < z_i)) + I((a_i = z_i) \land (b_i = z_i)) + I((a_i > z_i) \land (b_i > z_i)) \right]$$
$$D(\mathbf{a}, \mathbf{b}) = \frac{1}{k-2} \sum_{\mathbf{z} \notin \{\mathbf{a}, \mathbf{b}\}} (1 - S(\mathbf{a}, \mathbf{b}; \mathbf{z}))$$

Multidimensional scaling

Isomap

- Assumes solutions lie on some low-dimensional manifold and the distances along this manifold should be preserved
- Creates a graph of solutions, where only the neighboring solutions are linked
- The geodesic distance between any two solutions is calculated as the sum of Euclidean distances on the shortest path between the two solutions
- Uses multidimensional scaling to perform the mapping based on these distances

64

Seriated heatmaps

- · Heatmaps with rearranged objectives and solutions
- Similar objectives and similar solutions are placed together
- Ranks are used instead of actual objective values for a more uniform color usage
- Similarity can be computed using
 - Euclidean distance
 - Spearman's footrule
 - + Kendall's au metric

Seriated heatmaps

	Preservati	on of the						
dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
×	×	×	×	~	×	×	1	×

66

Two-stage mapping

Steps

- Split solutions to nondominated and dominated solutions
- Compute *r* as the average norm of nondominated solutions
- Find a permutation of nondominated solutions that minimizes implicit dominance errors and sum of distances between consecutive solutions
- First stage: distribute nondominated solutions on the circumference of a quarter-circle with radius *r* in the order of the permutation and with distances proportional to their distances in the objective space
- Second stage: map each dominated solution to the minimal point of all nondominated solutions that dominate it

Two-stage mapping

68

Distance- and dominance-based mappings

Distance- and dominance-based mappings

Both mappings

- Use nondominated sorting to split solutions to Pareto shells
- Project solutions onto the circumference of circles (with circle radius proportional to front number)

Distance-based mapping

Dominance-based mapping

- Tries to preserve closeness of solutions
- Similarity between solutions defined as dominance similarity
- Solution ordering using spectral seriation
- Aims at preserving dominance relations among solutions
- $\cdot \mbox{ All } \mathbf{x} \prec \mathbf{y}$ can be shown correctly
- Tries to minimize cases where
 x ⊀ y is not shown correctly

70

Visualizing single approximation sets Set properties (Visualizing solutions dependently from each other) → Showing aggregated properties • Self-organizing maps [21, 30] • Aggregation trees [13] • MoGrams [35], TBA

Self-organizing maps

- Self-organizing maps (SOMs) are neural networks
- Nearby solutions are mapped to nearby neurons in the SOM
- A SOM can be visualized using the unified distance matrix
- Distance between adjacent neurons is denoted with color
 - $\cdot \,$ Similar neurons \rightarrow light color
 - $\cdot~$ Different neurons (cluster boundaries) \rightarrow dark color

Self-organizing maps

Aggregation trees

- Binary trees that show relationships between objectives
- Iterative clustering of objectives based on their harmony
- Computation of different types of conflict
- Percentages quantify the conflict between objectives
- Colors used to show type of conflict
 - global conflict (black)
 - local conflict on 'good' values (red)
 - local conflict on 'bad' values (blue)
- Can be used to sort objectives in other representations (parallel coordinates, radial charts, heat maps)

Aggregation trees

Visualizing repeated approximation sets

Showing performance at a time

• Empirical Attainment Function (EAF) [15]

Average Runtime Attainment Function

Showing performance over time

(aRTA) [3]

78

Empirical attainment function

Goal-attainment

- Approximation set A
- A point in the objective space **z** is attained by *A* when **z** is weakly dominated by at least one solution from *A*

Empirical attainment function

EAF values [15]

- Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- + EAF of \mathbf{z} is the frequency of attaining \mathbf{z} by A_1, A_2, \ldots, A_r
- \cdot Summary (or k%-) attainment surfaces

Empirical attainment function

Differences in EAF values [25]

- Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- Algorithm \mathcal{B} , approximation sets B_1, B_2, \ldots, B_r
- Visualize differences between EAF values

81

Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of points/cuboids

Exact case

- Attainment surfaces: Visualization of facets
- EAF values: Slicing [2]
- EAF differences: Slicing, Maximum intensity projection [41, 2]

Approximated case

- Attainment surfaces: Grid-based sampling [20]
- EAF values: Slicing, Direct volume rendering [10, 2]
- EAF differences: Slicing, Maximum intensity projection, Direct volume rendering

Benchmark approximation sets

Sets of approximation sets

- 5 linear approximation sets with a uniform distribution of solutions (100 solutions in each)
- 5 spherical approximation sets with a nonuniform distribution of solutions (100 solutions in each)

Exact 3-D EAF values and differences

Slicing

- Visualize cuboids intersecting the slicing plane
- Need to choose coordinate and angle

Exact 3-D EAF values and differences

Exact 3-D EAF differences

Maximum intensity projection

- \cdot Volume rendering method for spatial data represented by voxels
- \cdot Simple and efficient
- $\cdot\,$ No sense of depth, cannot distinguish between front and back

© Christian Lackas

Exact 3-D EAF differences

Maximum intensity projection

- Suitable for visualizing EAF differences (focus on large differences)
- Sorting w.r.t. EAF differences (smaller to larger)
- \cdot Plot on top of previous ones

Approximated attainment surfaces

Grid-based sampling

85

87

Repeat for all $f_i f_j$, i < j (i.e. $f_1 f_2$, $f_1 f_3$ and $f_2 f_3$):

- Construct a $k \times k$ grid on the plane $f_i f_j$
- Compute intersections between the attainment surface and the axis-aligned lines on the grid

Median attainment surfaces

Linear

Spherical

Approximated EAF values and differences

Discretization into voxels

- Discretization of cuboids
- Discretization from the space of EAF values/differences

Slicing

Approximated 3-D EAF differences

Maximum intensity projection

- Plots produced using Voreen [28, 37]
- Some loss of information

Approximated 3-D EAF values and differences

Direct volume rendering

- Volume rendering method for spatial data represented by voxels
- A transfer function assigns color and opacity to voxel values
- Enables to see "inside the volume"
- Requires the definition of the transfer function

Approximated 3-D EAF differences

Direct volume rendering of Lin-Sph

Approximated 3-D EAF differences

Approximated 3-D EAF values

Direct volume rendering of Sph

1/5 and 5/5

Average Runtime Attainment Function

aRTA value

- \cdot Algorithm $\mathcal A$ run r times
- All solutions that are nondominated at creation are recorded
- + aRTA(\mathbf{z}) is the average number of evaluations needed to attain \mathbf{z}

aRTA ratio

- \cdot Algorithms ${\cal A}$ and ${\cal B}$
- $\cdot\,$ Compute ratio between $\mathsf{aRTA}(\mathbf{z})$ values for $\mathcal A$ and $\mathcal B$

Visualization using grid-based sampling [3]

Approximated aRTA values

Two algorithms on the sphere-sphere problem [3]

95

Approximated aRTA ratios

aRTA ratio between Algorithms ${\cal A}$ and ${\cal B}$ [3]

98

Summary

- Visualization in multiobjective optimization useful for various purposes
- Customized methods are needed to address the peculiarities of approximation set visualization
- Many new approaches in the last years

100

Index

Methods for visualizing single approximation sets (page)

- Aggregation trees (75)
- Bubble chart (19)
- Chord diagram (TBA)
- Distance and distribution charts (46)
- Distance- and dominance-based
- mappings (70)Heat maps (27)
- Hyper-radial visualization (37)
- Hyper-space diagonal counting (50)
- Interactive decision maps (30)
- Isomap (63)
- Level diagrams (39)
- MoGrams (TBA)
- Multidimensional scaling (61)
- Neuroscale (58)
- Parallel coordinates (21)

- Pareto shells (48)
- Polar plots (TBA)
- Principal component analysis (53)
- Prosections (43)
- Radar chart (24)
- Radial coordinate visualization (33)
- Sammon mapping (55)
- Scatter plot matrix (16)
- Self-organizing maps (73)
- Seriated heatmaps (66)
- Tetrahedron coordinates model (35)
- Trade-off region maps (TBA)
- Treemaps (TBA)
- Two-stage mapping (68)
- 3-D Radial coordinate visualization (TBA)

Index

Methods for visualizing repeated approximation sets (page)

- Slicing
 - Exact EAF values (85)
 - Approximated EAF values and differences (89)
- Maximum intensity projection
 - Exact EAF differences (87)
 - Approximated EAF differences (90)

- Direct volume rendering
 - Approximated EAF values (94)
 - Approximated EAF differences (92)
- Grid-based sampling
 - Approximated attainment surfaces (88)
 - Approximated aRTA values (96)
 - Approximated aRTA ratios (97)

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0209 and project No. Z2-8177 *Incorporating real-world problems into the benchmarking of multiobjective optimizers*).

This work is part of a project that has received funding from the *European Union's Horizon 2020 research and innovation program* under grant agreement No. 692286.

SYNERGY

Synergy for Smart Multi-Objective Optimization www.synergy-twinning.eu

References

References i

1]	T. Tušar and B. Filipič. Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method
	IEEE Transactions on Evolutionary Computation, 19(2):225-245, 2015.
2]	T. Tušar and B. Filipič. Visualizing exact and approximated 3D empirical attainment functions. Mathematical Problems in Engineering, Article ID 569346, 18 pages, 2014.
3]	D. Brockhoff, A. Auger, N. Hansen and T. Tušar. Quantitative performance assessment of multiobjective optimizers: The average runtime attainment function. EMO 2017, pages 103–119, 2017.

References ii

- [4] G. Agrawal, C. L. Bloebaum, and K. Lewis. Intuitive design selection using visualized n-dimensional Pareto frontier. American Institute of Aeronautics and Astronautics, 2005.
 [5] K. H. Ang, G. Chong, and Y. Li. Visualization technique for analyzing pendominated set compari
 - **Visualization technique for analyzing nondominated set comparison.** SEAL '02, pages 36–40, 2002.
- X. Bi and B. Li. The visualization decision-making model of four objectives based on the balance of space vector. IHMSC 2012, pages 365–368, 2014.
- [7] X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez.
 A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization.
 Information Sciences, 178(20):3908–3924, 2008.

References iii

 [8] X. Blasco, G. Reynoso-Mezab, E. A. Sanchez Perez, and J. V. Sanchez Perez.
 Asymmetric distances to improve n-dimensional Pareto fronts

graphical analysis.

Information Sciences, 340-341:228-249, 2016.

- P.-W. Chiu and C. Bloebaum.
 Hyper-radial visualization (HRV) method with range-based preferences for multi-objective decision making.
 Structural and Multidisciplinary Optimization, 40(1–6):97–115, 2010.
- [10] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. *Real-time Volume Graphics.*

A. K. Peters, Natick, MA, USA, 2006.

References iv

- [11] R. M. Everson and J. E. Fieldsend.
 Multi-class ROC analysis from a multi-objective optimisation perspective.
 Pattern Recognition Letters, 27(8):918–927, 2006.
- J. E. Fieldsend and R. M. Everson.
 Visualising high-dimensional Pareto relationships in two-dimensional scatterplots.
 EMO 2013, pages 558–572, 2013.
- [13] A. R. R. de Freitas, P. J. Fleming, and F. G. Guimaraes.
 Aggregation trees for visualization and dimension reduction in many-objective optimization.

Information Sciences, 298:288–314, 2015.

107

References v

- S. Greco, K. Klamroth, J. D. Knowles, and G. Rudolph.
 Understanding complexity in multiobjective optimization (Dagstuhl seminar 15031).
 Dagstuhl Reports, pages 96–163, 2015.
- [15] V. D. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall.
 Inferential performance assessment of stochastic optimisers and the attainment function.
 EMO 2001, pages 213–225, 2001.
- [16] Z. He and G. G. Yen.
 Visualization and performance metric in many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(3):386–402, 2016.
- P. E. Hoffman, G. G. Grinstein, K. Marx, I. Grosse, and E. Stanley.
 DNA visual and analytic data mining.
 Conference on Visualization, pages 437–441, 1997.

References vi

[18] A. Ibrahim, S. Rahnamayan, M. V. Martin, K. Deb.
 3D-RadVis: Visualization of Pareto front in many-objective optimization

CEC 2016, pages 736-745, 2016.

[19] A. Inselberg.

Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, New York, NY, USA, 2009.

[20] J. Knowles.

A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. ISDA '05, pages 552–557, 2005.

[21] T. Kohonen.

Self-Organizing Maps.

Springer Series in Information Sciences, 2001.

References vii

- [22] R. H. Koochaksaraei, R. Enayatifar, and F. G. Guimaraes.
 A new visualization tool in many-objective optimization problems. HAIS 2016, pages 213–224, 2016.
- [23] M. Köppen and K. Yoshida.
 Visualization of Pareto-sets in evolutionary multi-objective optimization.
 - HIS 2007, pages 156–161, 2007.
- [24] F. Kudo and T. Yoshikawa.
 Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions.
 CEC 2012, 6 pages, 2012.

References viii

- [25] M. López-Ibáñez, L. Paquete, and T. Stützle.
 Exploratory analysis of stochastic local search algorithms in biobjective optimization.
 Experimental Methods for the Analysis of Optimization Algorithms, pages 209–222, 2010.
- [26] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier.

Kluwer Academic Publishers, Boston, MA, USA, 2004.

 [27] D. Lowe and M. E. Tipping.
 Feed-forward neural networks and topographic mappings for exploratory data analysis.
 Neural Computing & Applications, 4(2):83–95, 1996.

111

References ix

- [28] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. H. Hinrichs. Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Computer Graphics and Applications, 29(6):6–13, 2009.
- [29] K. Miettinen.
 Survey of methods to visualize alternatives in multiple criteria decision making problems.
 OR Spectrum, 36(1):3–37, 2014.
- [30] S. Obayashi and D. Sasaki.
 Visualization and data mining of Pareto solutions using self-organizing map.
 EMO 2003, pages 796–809, 2003.

References x

 [31] R. L. Pinheiro, D. Landa-Silva, and J. Atkin.
 Analysis of objectives relationships in multiobjective problems using trade-off region maps.

GECCO 2015, pages 735–742, 2015.

- [32] A. Pryke, S. Mostaghim, and A. Nazemi.
 Heatmap visualisation of population based multiobjective algorithms.
 EMO 2007, pages 361–375, 2007.
- [33] J. W. Sammon.
 - A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401–409, 1969.
- [34] J. B. Tenenbaum, V. de Silva, and J. C. Langford.
 A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

References xi

- [35] K. Trawinski, M. Chica, D. P. Pancho, S. Damas, and O. Cordon. moGrams: A network-based methodology for visualizing the set of non-dominated solutions in multiobjective optimization. CoRR abs/1511.08178, 2015.
- [36] J. Valdes and A. Barton.
 Visualizing high dimensional objective spaces for multiobjective optimization: A virtual reality approach.
 CEC 2007, pages 4199--4206), 2007.
- [37] Voreen, Volume rendering engine. http://www.voreen.org/
- [38] D. J. Walker, R. M. Everson, and J. E. Fieldsend.
 Visualisation and ordering of many-objective populations. CEC 2010, 8 pages, 2010.

References xii

[39] D. J. Walker, R. M. Everson, and J. E. Fieldsend.
 Visualizing mutually nondominating solution sets in many-objective optimization.

IEEE Transactions on Evolutionary Computation, 17(2):165–184, 2013.

[40] D. J. Walker.

Visualising multi-objective populations with treemaps. GECCO 2015, pages 963–970, 2015.

- [41] J. W. Wallis, T. R. Miller, C. A. Lerner, and E. C. Kleerup.
 Three-dimensional display in nuclear medicine.
 IEEE Transactions on Medical Imaging, 8(4):297–230, 1989.
- [42] M. Yamamoto, T. Yoshikawa, and T. Furuhashi.
 Study on effect of MOGA with interactive island model using visualization.
 CEC 2010, 6 pages, 2010.

