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Introduction

Multiobjective optimization problem
Minimize

f : X → F
f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

• X is an n-dimensional decision space
• F ⊆ Rm is an m-dimensional objective space (m ≥ 2)

Conflicting objectives→ a set of optimal solutions

• Pareto set in the decision space
• Pareto front in the objective space
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Introduction

Visualization in multiobjective optimization
Useful for different purposes [14]

• Analysis of solutions and solution sets
• Decision support in interactive optimization
• Analysis of algorithm performance

Visualizing solution sets in the decision space

• Problem-specific
• If X ⊆ Rm, any method for visualizing multidimensional
solutions can be used

• Not the focus of this tutorial
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Introduction

Visualizing solution sets in the objective space

• Interested in sets of mutually nondominated solutions called
approximation sets

• Different from ordinary multidimensional solution sets
• The focus of this tutorial

Challenges

• High dimension and large number of solutions
• Limitations of computing and displaying technologies
• Cognitive limitations
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Introduction

Visualization can be hard even in 2-D
Stochastic optimization algorithms

• Single run→ single approximation set
• Multiple runs→ multiple approximation sets
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The Empirical Attainment Function (EAF) [15] or the Average Runtime
Attainment Function (aRTA) [3] can be used in such cases
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Introduction

This tutorial is not about

• Visualization of a few solutions for decision making purposes
(see [29])

• Visualization in the decision space
• General multidimensional visualization methods not previously
used on approximation sets

This tutorial covers

• Visualization of entire sets in the objective space
• Single approximation sets [1]
• Repeated approximation sets [2, 3]
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A taxonomy of visualization
methods

A taxonomy of visualization methods

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Visualizing single
approximation sets



Methodology

Evaluating and comparing visualization methods

• No existing methodology for evaluating or comparing
visualization methods

• Propose benchmark approximation sets (analog to benchmark
problems in multiobjective optimization)

• Visualize the sets using different methods
• Observe which set properties are distinguishable after
visualization
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Benchmark approximation sets

Two different sets that can be instantiated in any dimension [1]

• Linear with a uniform distribution of solutions
• Spherical with a nonuniform distribution of solutions (more at
the corners and less at the center)

• Sets are intertwined

Size of each set

• 2-D: 50 solutions
• 3-D: 500 solutions
• 4-D: only 300 solutions since most methods cannot handle more
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Benchmark approximation sets
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Benchmark approximation sets

These two sets are not sufficient for all purposes!

Missing:

• A set with knees

• A set with different relations between objectives, temporarily
using [13]:
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• A sequence of sets mimicking convergence in time

• … (possibly others)
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Desired properties of visualization methods

Demonstration on the 4-D linear and spherical sets

• Preservation of the
• Dominance relation between solutions
• Front shape
• Objective range
• Distribution of solutions

• Robustness
• Handling of large sets
• Simultaneous visualization of multiple sets
• Scalability in number of objectives
• Simplicity

Demonstration on the 12-D approximation set

• Showing relations between objectives
14

Visualizing single approximation sets

Individual solutions (Visualizing solutions independently from each
other)→ Showing original values of solutions

• Scatter plot matrix

• Bubble chart

• Parallel coordinates [19]

• Radar chart

• Chord diagram [22], TBA

• Heat maps [32]

• Interactive decision maps [26]

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Scatter plot matrix

Most often

• Scatter plot in a 2-D space

• Matrix of all possible combinations

• m objectives→ m(m−1)
2 different combinations

Alternatively

• Scatter plot in a 3-D space

• m objectives→ m(m−1)(m−2)
6 different combinations
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Scatter plot matrix
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Scatter plot matrix
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Bubble chart

4-D objective space

• Similar to a 3-D scatter plot

• Fourth objective visualized with point size

5-D objective space

• Fifth objective visualized with colors
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Bubble chart
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Parallel coordinates

• m objectives→ m parallel axes

• Solution represented as a polyline with vertices on the axes

• Position of each vertex corresponds to that objective value

• No loss of information
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Parallel coordinates
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Parallel coordinates
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Radar chart

• Similar to parallel coordinates

• Additionally connects the two extreme coordinates

• m objectives→ m radial axes

• Also called a spider chart, polar chart, star plot, …
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Radar chart
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Radar chart
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Heat maps

• m objectives→ m columns

• One solution per row

• Each cell colored according to objective value

• No loss of information
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Heat maps
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Heat maps
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Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains
all points in the objective space that are weakly dominated by any
solution in A.

Interactive decision maps

• Visualize the surface of the EPH, not the actual approximation
set

• Plot a number of axis-aligned sampling surfaces of the EPH

• Color used to denote third objective

• Fixed value of the forth objective
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Interactive decision maps
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Visualizing single approximation sets

Individual solutions (Visualizing solutions independently from each
other)→ Showing transformed values of solutions

• Radial coordinate visualization
[17, 39]

• 3-D Radial coordinate visualization
[18], TBA

• Tetrahedron coordinates model [6]

• Polar plots [16], TBA

• Hyper-radial visualization [9]

• Level diagrams [7, 8]

• Prosections [1]

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Radial coordinate visualization

Also called RadViz
• Inspired from physics

• Objectives treated as anchors,
equally spaced around the
circumference of a unit circle

• Solutions attached to anchors with
‘springs’

• Spring stiffness proportional to the
objective value

• Solution placed where the spring
forces are in equilibrium

f1

f2

f3

f4
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Radial coordinate visualization
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Tetrahedron coordinates model

• Only for four objectives

• Similar to RadViz

• Objectives treated as
anchors, placed at the
vertices of a regular
tetrahedron

• Solutions attached to
anchors with ‘springs’

• Spring flexibility proportional
to the objective value

• Solution placed where the
forces are in equilibrium

f1 f2

f3

f4
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Tetrahedron coordinates model
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Hyper-radial visualization

• Solutions preserve distance (hyper-radius) to the ideal point

• Distances are computed separately for two subsets of objectives

• Indifference curves denote points with the same preference
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Hyper-radial visualization
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Level diagrams

• m objectives→ m diagrams

• Plot solutions with objective fi on the x axis and distance to the
ideal point on the y axis
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Level diagrams
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Level diagrams with asymmetric norm

• Compute an asymmetric norm a (very similar to the Iε+
indicator) between any solution and the reference point

• a = 0 ⇒ the solution dominates the reference point
• a > 0 ⇒ the solution needs to be moved by a to dominate the
reference point

• Use on our benchmark approximation sets
• The spherical set is used as the reference set
• a = 0 ⇒ the solution from the linear set dominates a solution
from the spherical set

• a > 0 ⇒ the solution from the linear set needs to be moved by at
least a to dominate one solution from the spherical set
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Level diagrams with asymmetric norm
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Prosections

• Visualize only part of the objective space

• Dimensionality reduction by projection of solutions in a section

• Need to choose prosection plane, angle and section width
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Prosections

300 solutions 3000 solutions
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Visualizing single approximation sets

Set properties (Visualizing solutions dependently from each
other) → Showing individual solution-based properties → Not
optimization based

• Distance and distribution charts [5]

• Pareto shells [38]

• Hyper-space diagonal counting [4]

• Treemaps [40], TBA

• Trade-off region maps [31], TBA

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Distance and distribution charts

• Plot solutions against their distance to the Pareto front and
distance to other solutions

• Distance chart
• Plot distance to the nearest non-dominated solution

• Distribution chart
• Sort solutions w.r.t. first objective
• Plot distances between consecutive solutions
• For the first/last solution, compute distance to first/last
non-dominated solution

• k solutions→ k + 1 distances

• All distances normalized to [0, 1]
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Distance and distribution charts
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Pareto shells

• Use nondominated sorting to split solutions to Pareto shells

• Represent solutions in a graph

• Connect dominated solutions to those that dominate them (we
show only one arrow per dominated solution)
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Hyper-space diagonal counting

• Inspired by Cantor’s proof that shows |N| = |N2| = |N3| . . .

(1, 1) (2, 1)

(1, 2)

(3, 1)

(2, 2)

(1, 3)

(4, 1)

(3, 2)

(2, 3)

. . .

• Discretize each objective (choose a number of bins)

• In the 4-D case
• Enumerate the bins for objectives f1 and f2

• Enumerate the bins for objectives f3 and f4

• Plot the number of solutions in each pair of bins
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Hyper-space diagonal counting
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Visualizing single approximation sets

Set properties (Visualizing solutions dependently from each other)
→ Showing individual solution-based properties → Optimization
based

• Principal component analysis [42]

• Sammon mapping [33, 36]

• Neuroscale [27, 11]

• Multidimensional scaling [39]

• Isomap [34, 24]

• Seriated heatmaps [39]

• Two-stage mapping [23]

• Distance-based and
dominance-based mappings [12]

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Principal component analysis

• Principal components are linear combinations of objectives that
maximize variance (and are uncorrelated with already chosen
components)

• They are the eigenvectors with the highest eigenvalues of the
covariance matrix
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Principal component analysis
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Sammon mapping

• A non-linear mapping

• Aims to preserve distances between solutions
• d∗

ij distance between solutions xi and xj in the objective space
• dij distance between solutions xi and xj in the visualized space

• Stress function to be minimized

S =
∑
i<j

(d∗
ij − dij)

2

dij

• Minimization by gradient descent or other (iterative) methods
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Sammon mapping
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Sammon mapping
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Neuroscale

• A non-linear mapping

• Aims to minimize the same stress function as Sammon mapping

• Uses a radial basis function neural network to model the
projection
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Neuroscale
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Neuroscale
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Multidimensional scaling

• Classical multidimensional scaling aims at preserving
similarities between solutions

• Here, dominance distance is used to measure similarity

• Two solutions are similar if they share dominance relationships
with a third solution

S(a,b; z) = 1
m

m∑
i=1

[
I((ai < zi) ∧ (bi < zi))

+ I((ai = zi) ∧ (bi = zi))

+ I((ai > zi) ∧ (bi > zi))
]

D(a,b) = 1
k − 2

∑
z/∈{a,b}

(1 − S(a,b; z))
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Multidimensional scaling
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Isomap

• Assumes solutions lie on some low-dimensional manifold and
the distances along this manifold should be preserved

• Creates a graph of solutions, where only the neighboring
solutions are linked

• The geodesic distance between any two solutions is calculated
as the sum of Euclidean distances on the shortest path between
the two solutions

• Uses multidimensional scaling to perform the mapping based
on these distances
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Isomap
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Seriated heatmaps

• Heatmaps with rearranged objectives and solutions

• Similar objectives and similar solutions are placed together

• Ranks are used instead of actual objective values for a more
uniform color usage

• Similarity can be computed using
• Euclidean distance
• Spearman’s footrule
• Kendall’s τ metric
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Seriated heatmaps
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Two-stage mapping

Steps

• Split solutions to nondominated and dominated solutions

• Compute r as the average norm of nondominated solutions

• Find a permutation of nondominated solutions that minimizes
implicit dominance errors and sum of distances between
consecutive solutions

• First stage: distribute nondominated solutions on the
circumference of a quarter-circle with radius r in the order of
the permutation and with distances proportional to their
distances in the objective space

• Second stage: map each dominated solution to the minimal
point of all nondominated solutions that dominate it
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Two-stage mapping
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Distance- and dominance-based mappings

Both mappings

• Use nondominated sorting to split solutions to Pareto shells
• Project solutions onto the circumference of circles (with circle
radius proportional to front number)

Distance-based mapping
• Tries to preserve closeness of
solutions

• Similarity between solutions
defined as dominance
similarity

• Solution ordering using
spectral seriation

Dominance-based mapping
• Aims at preserving
dominance relations among
solutions

• All x ≺ y can be shown
correctly

• Tries to minimize cases where
x ⊀ y is not shown correctly
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Distance- and dominance-based mappings
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Visualizing single approximation sets

Set properties (Visualizing solutions dependently from each other)
→ Showing aggregated properties

• Self-organizing maps [21, 30]

• Aggregation trees [13]

• MoGrams [35], TBA

Visualization in multiobjective optimization

Single
approximation sets

Individual solutions
(visualizing solutions
independently from

each other)

Showing original
values of solutions

Showing transformed
values of solutions

Set properties
(visualizing solutions

dependently from
each other)

Showing individual
solution properties

Not optimization
based

Optimization
based

Showing aggregated
properties

Repeated
approximation sets

Showing
performance

at a time

Showing
performance

over time
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Self-organizing maps

• Self-organizing maps (SOMs) are neural networks

• Nearby solutions are mapped to nearby neurons in the SOM

• A SOM can be visualized using the unified distance matrix

• Distance between adjacent neurons is denoted with color
• Similar neurons→ light color
• Different neurons (cluster boundaries)→ dark color
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Self-organizing maps

Linear Spherical

74

Aggregation trees

• Binary trees that show relationships between objectives

• Iterative clustering of objectives based on their harmony

• Computation of different types of conflict

• Percentages quantify the conflict between objectives

• Colors used to show type of conflict
• global conflict (black)
• local conflict on ’good’ values (red)
• local conflict on ’bad’ values (blue)

• Can be used to sort objectives in other representations (parallel
coordinates, radial charts, heat maps)
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Aggregation trees
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Visualizing repeated
approximation sets

Visualizing repeated approximation sets

Showing performance at a time

• Empirical Attainment Function (EAF) [15]

Showing performance over time

• Average Runtime Attainment Function
(aRTA) [3]

Visualization in multiobjective optimization
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Empirical attainment function

Goal-attainment

• Approximation set A
• A point in the objective space z is attained by A when z is
weakly dominated by at least one solution from A
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Empirical attainment function

EAF values [15]

• Algorithm A, approximation sets A1,A2, . . . ,Ar

• EAF of z is the frequency of attaining z by A1,A2, . . . ,Ar

• Summary (or k%-) attainment surfaces
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Empirical attainment function

Differences in EAF values [25]

• Algorithm A, approximation sets A1,A2, . . . ,Ar

• Algorithm B, approximation sets B1,B2, . . . ,Br

• Visualize differences between EAF values
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Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of
points/cuboids

Exact case

• Attainment surfaces: Visualization of facets
• EAF values: Slicing [2]
• EAF differences: Slicing, Maximum intensity projection [41, 2]

Approximated case

• Attainment surfaces: Grid-based sampling [20]
• EAF values: Slicing, Direct volume rendering [10, 2]
• EAF differences: Slicing, Maximum intensity projection, Direct
volume rendering
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Benchmark approximation sets

Sets of approximation sets

• 5 linear approximation sets with a uniform distribution of
solutions (100 solutions in each)

• 5 spherical approximation sets with a nonuniform distribution
of solutions (100 solutions in each)
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Exact 3-D EAF values and differences

Slicing

• Visualize cuboids intersecting the slicing plane
• Need to choose coordinate and angle

r
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z z
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o
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Exact 3-D EAF values and differences

Slicing
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Exact 3-D EAF differences

Maximum intensity projection

• Volume rendering method for spatial data represented by voxels
• Simple and efficient
• No sense of depth, cannot distinguish between front and back

Viewpoint

Projection plane

© Christian Lackas
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Exact 3-D EAF differences

Maximum intensity projection

• Suitable for visualizing EAF differences (focus on large
differences)

• Sorting w.r.t. EAF differences (smaller to larger)
• Plot on top of previous ones
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Approximated attainment surfaces

Grid-based sampling
Repeat for all fifj, i < j (i.e. f1f2, f1f3 and f2f3) :

• Construct a k × k grid on the plane fifj
• Compute intersections between the attainment surface and the
axis-aligned lines on the grid

Median attainment surfaces
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Approximated EAF values and differences

Discretization into voxels

• Discretization of cuboids
• Discretization from the space of EAF values/differences

Slicing
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Approximated 3-D EAF differences

Maximum intensity projection

• Plots produced using Voreen [28, 37]
• Some loss of information
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Approximated 3-D EAF values and differences

Direct volume rendering

• Volume rendering method for spatial data represented by voxels
• A transfer function assigns color and opacity to voxel values
• Enables to see “inside the volume”
• Requires the definition of the transfer function
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Approximated 3-D EAF differences

Direct volume rendering of Lin-Sph

1/5 2/5 3/5

4/5 5/5 1/5 and 5/5
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Approximated 3-D EAF differences

Direct volume rendering of Sph-Lin
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4/5 5/5 1/5 and 5/5
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Approximated 3-D EAF values

Direct volume rendering of Sph

1/5 and 5/5
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Average Runtime Attainment Function

aRTA value

• Algorithm A run r times
• All solutions that are nondominated at creation are recorded
• aRTA(z) is the average number of evaluations needed to attain z

aRTA ratio

• Algorithms A and B
• Compute ratio between aRTA(z) values for A and B
•

Visualization using grid-based sampling [3]
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Approximated aRTA values

Two algorithms on the sphere-sphere problem [3]

Algorithm A Algorithm B
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Approximated aRTA ratios

aRTA ratio between Algorithms A and B [3]
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Summary

Summary
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Summary

Visualization in multiobjective optimization
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Summary

• Visualization in multiobjective optimization useful for various
purposes

• Customized methods are needed to address the peculiarities of
approximation set visualization

• Many new approaches in the last years
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Index

Methods for visualizing single approximation sets (page)
• Aggregation trees (75)
• Bubble chart (19)
• Chord diagram (TBA)
• Distance and distribution charts (46)
• Distance- and dominance-based
mappings (70)

• Heat maps (27)
• Hyper-radial visualization (37)
• Hyper-space diagonal counting (50)
• Interactive decision maps (30)
• Isomap (63)
• Level diagrams (39)
• MoGrams (TBA)
• Multidimensional scaling (61)
• Neuroscale (58)
• Parallel coordinates (21)

• Pareto shells (48)
• Polar plots (TBA)
• Principal component analysis (53)
• Prosections (43)
• Radar chart (24)
• Radial coordinate visualization (33)
• Sammon mapping (55)
• Scatter plot matrix (16)
• Self-organizing maps (73)
• Seriated heatmaps (66)
• Tetrahedron coordinates model (35)
• Trade-off region maps (TBA)
• Treemaps (TBA)
• Two-stage mapping (68)
• 3-D Radial coordinate visualization (TBA)
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Index

Methods for visualizing repeated approximation sets (page)

• Slicing
• Exact EAF values (85)
• Approximated EAF values and
differences (89)

• Maximum intensity projection
• Exact EAF differences (87)
• Approximated EAF differences
(90)

• Direct volume rendering
• Approximated EAF values (94)
• Approximated EAF differences
(92)

• Grid-based sampling
• Approximated attainment
surfaces (88)

• Approximated aRTA values (96)
• Approximated aRTA ratios (97)
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