
Quantitative Performance Assessment
of Multiobjective Optimizers: The Average

Runtime Attainment Function

Dimo Brockhoff1(B), Anne Auger1, Nikolaus Hansen1, and Tea Tušar2

1 Inria Saclay – Ile-de-France and CMAP, UMR CNRS 7641, Ecole Polytechnique,
Palaiseau, France

{dimo.brockhoff,anne.auger,nikolaus.hansen}@inria.fr
2 Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia

tea.tusar@ijs.si

Abstract. Numerical benchmarking of multiobjective optimization
algorithms is an important task needed to understand and recommend
algorithms. So far, two main approaches to assessing algorithm perfor-
mance have been pursued: using set quality indicators, and the (empir-
ical) attainment function and its higher-order moments as a general-
ization of empirical cumulative distributions of function values. Both
approaches have their advantages but rely on the choice of a quality indi-
cator and/or take into account only the location of the resulting solution
sets and not when certain regions of the objective space are attained.
In this paper, we propose the average runtime attainment function as a
quantitative measure of the performance of a multiobjective algorithm.
It estimates, for any point in the objective space, the expected runtime
to find a solution that weakly dominates this point. After defining the
average runtime attainment function and detailing the relation to the
(empirical) attainment function, we illustrate how the average runtime
attainment function plot displays algorithm performance (and differences
in performance) for some algorithms that have been previously run on
the biobjective bbob-biobj test suite of the COCO platform.

1 Introduction

Performance assessment of black-box algorithms is an important task to under-
stand and to recommend algorithms in the contexts of practical applications
and the design of new algorithms. A lot of progress has been made recently in
single-objective optimization on improving standards to assess algorithm perfor-
mance properly. Particularly, for instance, through the introduction of runtime
distributions or data profiles [10,12], performance profiles [4] or software plat-
forms for automated benchmarking, such as COCO [8]. One important aspect
of performance assessment, as advocated within the COCO framework, is the
need for quantitative performance measures. There exist typically two ways of
collecting data within single-objective optimization:

c© Springer International Publishing AG 2017
H. Trautmann et al. (Eds.): EMO 2017, LNCS 10173, pp. 103–119, 2017.
DOI: 10.1007/978-3-319-54157-0 8



104 D. Brockhoff et al.

– Record at a given time (budget/function evaluations) the objective function
values reached by different runs of an algorithm on a problem. This is referred
to as the fixed-budget view (see Fig. 1).

– Collect for a certain function value/target the runtime (typically measured in
number of function evaluations) to reach this target. In case the target is not
reached by a run, one would record the maximal runtime before stopping the
run. This is referred to as the fixed-target scenario (see again Fig. 1).

Fig. 1. Fixed-budget versus fixed-target scenarios. Given 5 runs of an algorithm, the
fixed budget scenario consists of fixing a cost and recording the objective function
values of the 5 runs at this given budget, while the fixed-target scenario consists of
fixing a target and recording the number of function evaluations the 5 runs need to
reach this target.

While the first scenario is often argued as close to practice where one has
a finite budget to solve a problem, it does not allow for a meaningful quanti-
tative performance assessment, because the recorded function values can only
be interpreted with the scaling of the objective function in mind (reaching with
Algorithm A a function value that is two times smaller than the one reached by
Algorithm B could mean either that Algorithm A is marginally faster than B
or much faster, depending on the objective function to be optimized). On the
contrary, the fixed-target view collects runtimes, which allows for direct quanti-
tative comparisons of the type “Algorithm A is two times faster than Algorithm
B (to reach a certain target)”. Empirical cumulative distributions (ECDFs) of
runtimes collected at a given target—compliant with the fixed-target view and
originally introduced as runtime distributions [10] and data profiles [12]—are
now standard to assess performance of single-objective algorithms.

For comparing multiobjective algorithms, the fixed-target view has been
adopted only recently, in particular in the context of the COCO framework
[8], while the less interpretable fixed-budget view is still by far more common.
In both cases, most of the time a quality indicator is used to directly exploit



The Average Runtime Attainment Function 105

single-objective performance assessment techniques such as statistical tests, box-
plots, or data/performance profiles. To be more precise, a single, real-valued
quality is assigned to each (set) outcome of an optimization algorithm—either
as a quality of a single population, or, as for example in the case of COCO, as
the quality of all non-dominated solutions found by an algorithm at an arbitrary
point in time. This so-called quality indicator approach to performance assess-
ment is simple but relies on the choice of an indicator (or a set of indicators).

The other well-known approach to assessing the performance of multiobjec-
tive algorithms has been proposed in the seminal works by Carlos M. Fonseca
and his co-authors: the visualization and analysis of the (empirical) attainment
function [5,6]. The attainment function is thereby a generalization of ECDFs of
the best function value at a given time to the multiobjective case and gives, for
each point in the objective space, the probability that this point is attained (or
in other words weakly dominated) by an algorithm at the end of its run. It is
typically approximated as the empirical attainment function (EAF) in practice
by estimating the probability to attain a point from a (small) set of independent
algorithm runs. The EAF can be plotted to get an idea of where in objective
space an algorithm produces solutions.

However, when investigating the attainment function for a given algorithm,
one looses the information on when certain points in objective space have been
attained by the algorithm. It is the main goal of this paper to propose, based
on the idea of the attainment function, a new performance assessment display
which allows to investigate also the runtime—the time an algorithm takes to
reach certain points in objective space. We thereby transfer the ideas of expected
runtime (ERT) and average runtime (aRT) from the single-objective case [7,9]
to the multiobjective case through the so-called average runtime attainment
(aRTA) function and its associated plot. Similar to the EAF difference plots
from [11], we furthermore introduce the aRTA ratio function to compare the
average runtimes of two algorithms graphically. Based on a first preliminary
implementation of the aRTA and aRTA ratio plots, the performance of a few
algorithms from the BBOB 2016 workshop1, obtained via the COCO platform,
is displayed to showcase the usefulness of the new approach.

The paper is organized as follows. Section 2 gives the background on the
attainment function approach as well as on the concepts of expected and average
runtime, our aRTA functions are based upon. Section 3 details the new displays
while Sect. 4 showcases them for a few data sets, obtained on the bbob-biobj test
suite of the COCO platform, and gives details on the provided implementation.
Finally, Sect. 5 concludes the paper and discusses the limitations of the proposed
performance displays.

1 see https://numbbo.github.io/workshops/BBOB-2016/.

https://numbbo.github.io/workshops/BBOB-2016/


106 D. Brockhoff et al.

2 Preliminaries

Throughout the paper, we consider the minimization of a multiobjective problem
with m objective functions defined over a general search space Ω, i.e. we minimize

x ∈ Ω �→ (f1(x), . . . , fm(x)) ∈ Rm (1)

in which no specific assumption on the search space Ω is made. The search space
can actually be discrete, continuous, etc. and in the remainder, we therefore focus
our investigations on objective vectors z ∈ Rm only and, for simplicity, use the
terms solution and objective vector interchangeably. We denote the coordinates
of an objective vector z ∈ Rm as (z1, . . . , zm).

The weak dominance relation is defined for two objective vectors y and z of
Rm as y weakly dominates z, denoted y � z, if and only if yi ≤ zi for all i. A
generalization of the weak dominance relation towards sets of objective vectors
is straightforward by defining weak dominance between two sets Y and Z (both
subsets of Rm) whenever for each x ∈ Z there exists a y ∈ Y such that y weakly
dominates z. In this case, we follow the notation of [6] and write Y � Z.

If in a set of objective vectors A, all pairs of objective vectors are mutually
non-dominated (in terms of the above weak dominance relation), we call A a
set of mutually non-dominated objective vectors, or also a set of non-dominated
vectors or even simpler, a non-dominated set.

2.1 Empirical Attainment Function

Given a set of non-dominated vectors X = {X1, . . . , Xp} (of random) size p and
given a target vector z ∈ Rm of the objective space, we say that the target is
reached (or attained) by the vector-set X if X � z.

Given N such sets of non-dominated vectors {X1, . . . ,XN} (each containing
a random number of non-dominated vectors), the empirical attainment function
(EAF) introduced in [6] is defined as

α(z) =
1
N

N∑

i=1

1{Xi � z} . (2)

The EAF maps the objective space Rm to [0, 1]. In practice, the EAF is computed
for N sets of non-dominated vectors that are the outcome of N independent trials
collected at the end of a run or at a fixed budget T . It estimates the probability
of an optimizer to find, within the budget T , an objective vector which is at
least as good as the target vector z, where “at least as good” is interpreted in
the weak dominance sense. Equivalently, the EAF estimates the probability to
attain the region

A(z) = {y ∈ Rm|z � y} . (3)

To emphasize the dependence on T , we denote by αT (z) the empirical attainment
function of non-dominated vectors collected at a time T . In the case of a single



The Average Runtime Attainment Function 107

objective (m = 1), z → αT (z) is the empirical cumulative distribution of the
objective functions distribution reached at T [6]. That is, it is the empirical
cumulative distribution of the data collected within the fixed budget scenario
introduced in the introduction.

What Is Collected and Exploited? To summarize, the empirical attainment
function relies solely on N sets, each composed of a random number of non-
dominated objective vectors, which have been collected at some point in time T
of an algorithm run. In order to allow for meaningful comparisons of algorithms,
the time T shall be the same for all algorithms considered. To see the evolution
of the algorithm performances during the search, multiple empirical attainment
functions (for varying T ) have to be displayed.

2.2 Expected Runtime (ERT) and Average Runtime (aRT)

While the EAF assumes a fixed budget, we remind here the definition of the
expected runtime and average runtime that assume a fixed-target scenario. Con-
sider the case where algorithm A either successfully reaches the target value
ftarget or it does not. The ERT [7] corresponds to the expected runtime of a con-
ceptual algorithm that would restart A till obtaining a success, i.e., till ftarget is
reached. Given that algorithm A has a probability of success of ps, an expected
runtime for successful runs of E[RTs] and an expected runtime for unsuccessful
runs of E[RTus], the ERT can be expressed as

ERT(ftarget) =
1 − ps

ps
E[RTus] + E[RTs] . (4)

It allows to compare in a meaningful and quantitative way algorithms that have
a small probability of success, but converge fast when they do, with algorithms
with a larger probability of success and a slower convergence rate.

An estimator for ERT is the average runtime (aRT, see also for example [7]).
Given N runs of an algorithm with Ns successes to reach the target ftarget and
an overall number of function evaluations of FE(N) =

∑N
i=1 Ti that includes the

number of function evaluations for successful and unsuccessful runs, the aRT
equals

aRT(ftarget) =
FE(N)

Ns
. (5)

The estimator for ERT when all unsuccessful runs have a number of function
evaluations equal to a cutoff number was actually first proposed in [9].

3 Average Runtime Attainment Functions

We introduce in this section the average runtime attainment (aRTA) function
that can be seen as a generalization of the attainment function where the infor-
mation on the runtime to reach a target vector is re-introduced.



108 D. Brockhoff et al.

Similar to the EAF difference plots for comparing the EAFs of two algorithms
in [11], we introduce the aRTA ratio function in addition for an easier comparison
of the average runtimes between two algorithms.

3.1 Average Runtime Attainment Function

Compliant with the fixed-target approach, we fix a target vector z ∈ Rm and
collect the minimal number of function evaluations (runtime) T (z) to obtain a
solution that weakly dominates z. If a run was not successful, that is, it did not
find a solution that weakly dominates z, we collect the runtime of the run when
it stopped. We assume that over N trials of the algorithm, we have collected all
N runtimes, T1(z), . . . TN (z), and obtained Ns successes (≤ N). Then, the aRTA
is the function defined as

aRTA(z) =
∑N

i=1 Ti(z)
Ns

. (6)

Comparing (5) with (6), we see that aRTA is the natural generalization of the
aRT estimator used in the single-objective case where we have adapted the notion
of success from reaching a function value below a certain target to reaching a
solution that weakly dominates a target vector. The aRTA function maps Rm

to R+. Note in particular that, like in the single-objective case, the maximum
number of function evaluations recorded for an algorithm effects the aRT values
which Sect. 4.1 investigates in more detail.

In order to plot aRTA(z) in practice, the average runtime values of R+ need
to be mapped to a color as we will showcase in the following section. Before,
however, let us transfer another known concept around empirical attainment
functions.

3.2 Average Runtime Attainment Ratio Function

In order to compare the aRTs of two algorithms more easily, we advocate to dis-
play the plots of the so-called aRTA ratio function, similar to the EAF difference
plots of [11].2

To compare the aRTA functions of algorithms A and B, we can, in principle,
plot the ratio of the two aRTA function values for both algorithms and each
objective vector directly, i.e. we can plot

aRTAratio(z) =
aRTAB(z)
aRTAA(z)

(7)

as long as aRTAratio(z) is well defined (it is not well defined as soon as one or
both of the aRTA function values are not finite). Since the measured runtimes

2 We opt for displaying ratios here instead of differences as the ratio scale is more
natural for statements on runtimes and also has stronger theoretical properties than
the interval scale [13].



The Average Runtime Attainment Function 109

are comparable on a ratio scale with a non-arbitrary zero, we prefer aRTA ratios
here over differences like in the EAF case [11]. This has the immediate effect that
aRTA ratio functions are interpretable without the need to know any absolute
values. To have an easier-to-read plot and to also cope with undefined aRTAratio

values, we actually propose to display a slight variant of the above.
If aRTAratio(z) is well-defined and larger than 1, indicating an advantage

for algorithm A, we simply plot aRTAratio(z). Likewise, if aRTAratio(z) is well-
defined and smaller than 1, indicating an advantage for algorithm B, we plot

1
aRTAratio(z)

, color-coded with a different colormap instead—making it possible
to easily compare advantages of algorithm A with advantages of algorithm B in
the sense of statements like “Algorithm A is X times better than algorithm B in
attaining the objective vector z”. Undefined values of aRTAratio(z), where only
one algorithm possesses a finite aRT value (because for the other, all runs are
unsuccessful), can nevertheless be plotted in a color that indicates the algorithm
with the more favorable behavior.

3.3 What Is Collected and Exploited?

In comparison to the empirical attainment function, the aRTA and aRTA ratio
functions rely on additional information about algorithm runs. In particular,
each solution, which is not dominated by already evaluated solutions, needs
to be recorded together with the runtime (in number of function evaluations)
when it was evaluated by the algorithm. The input to the aRTA function and the
aRTA ratio is therefore a sorted list of (number of function evaluations, objective
vector) pairs such that for each algorithm run/problem instance, at each point
in time, the current (external) archive of non-dominated solutions found so far
can be reconstructed from the data.

Note that in the case of a single recorded run, the aRTA function plot is a
visualization of all solutions over time and can be seen as a generalization of a
single-objective convergence graph to the multiobjective case, see Fig. 2 for an
example.

4 Numerical Examples from COCO

In order to showcase the usefulness of the proposed aRTA plots, we implemented
a (preliminary) visualization in Python, which is made available on GitHub3 and
is able to display the algorithm performance from the archive of non-dominated
solutions, recorded by the COCO platform [8] on functions from the bbob-biobj
test suite [14].

In particular, the provided source code reads in the algorithm data from a
COCO archive folder in the form of objective vector and runtime pairs (i.e. the
function evaluation counter when the objective vector was produced) for each of
10 problem instances per function and dimension n. The code then computes and

3 https://github.com/numbbo/coco/tree/master/code-postprocessing/aRTAplots.

https://github.com/numbbo/coco/tree/master/code-postprocessing/aRTAplots


110 D. Brockhoff et al.

Fig. 2. The aRTA plot for a single algorithm run reduces to a visualization of all
recorded non-dominated solutions. The example plot above shows a single run of
the algorithm SMS-EMOA with polynomial mutation and SBX crossover on the
bbob-biobj function 1 (sphere - sphere function) with 5 variables. (Color figure online)

displays the aRTA function values to weakly dominate for the first time a given
objective vector z. When displaying the aRTA ratio function, the data of two
algorithms is read in and the aRTA ratios are computed after the calculations of
the single aRTA values for both algorithms. In both cases, we use a regular grid
of objective vectors z for which we compute the aRT values instead of computing
the aRTA areas of constant value exactly. Areas in between grid points are then
colored according to the aRTA value (and aRTA ratio respectively) of its lower
left corner. All objective values are normalized so that the ideal point is at [0, 0]
and the nadir point is at [1, 1].4

All aRTA function plots shown in this paper are in log-scale and, if not speci-
fied differently, use a grid of 200×200 points, chosen equidistant on the log-scale
between the ideal point [0, 0] and the point [10, 10].5 The color-coding of the
aRTA values is done in a log-scale as well so that the same color ranges are
used, for example, for the first 100 function evaluations (“white to yellow ”)

and the function evaluations 104n, . . . , 106n (“ red to black”). Note that the
color scheme is absolute to allow for comparisons across figures and all solutions
produced beyond the maximal budget of 106n function evaluations are not used
in the display. Although from all data sets submitted to the BBOB-2016 work-
shop only the one of HMO-CMA-ES contains solutions beyond this threshold,
Sect. 4.1 investigates the influence of this parameter on the aRTA function plots
in detail.

4 Note that such a normalization allows for objective values to be larger than 1 and
that our plots clips the display to objective values smaller than 10.

5 Note that with the logscale parameter in the provided source code, the log-scale
can be easily turned on and off.



The Average Runtime Attainment Function 111

In order to cope with the large data sets produced by the COCO platform6,
our implementation removes all but one of the recorded solutions within each
grid cell before the computation of the aRT values. Thereby, the solution with
the smallest function evaluation count per instance and grid cell is kept to not
alter the plots while downsampling. As we will see later on in Sect. 4.2, this
downsampling significantly reduces the computation time for the aRTA function
plots. This section closes with showing a few examples of algorithm comparisons
in Sect. 4.3.

All experiments for this paper have been run with COCO, version 1.2.1—
more precisely with the code of the feature-branch as of commit 1c22851 on
Dec. 31, 2016.

4.1 The Influence of the Maximal Budget of Function Evaluations

As a first investigation of the aRTA function plots we consider the influence of the
maximal budget parameter, which specifies a threshold for function evaluations
after which no solution is taken into account anymore. While it is typically
not needed to change this parameter from its default setting of 106n function
evaluations to display the available COCO data, Fig. 3 shows the influence of the
maximal budget on the aRTA function plots for the Matlab implementation of
NSGA-II on the 5-dimensional separable ellipsoid - Rastrigin problem (function
f16 in the bbob-biobj test suite).

Two observations can be made from Fig. 3. First, we see that a larger max-
imal budget value (and thus data from longer runs) results in a larger range
of aRTA values, which are distributed in a larger area of the objective space.
Secondly, increasing the maximal budget can change the color of those areas in
the objective space that have not been attained in all runs at the lower budget
value. The color can get darker (see the difference for maximal budget set to
10n and 102n) or lighter (see the difference on the upper left part of the plot for
maximal budget set to 102n and 103n), depending on which change in the aRTA
fraction (the increasing runtimes in the numerator or the increasing success rate
in the denominator) has a larger effect. Once an area of the objective space has
been attained in all runs, its color cannot change any longer.

4.2 The Influence of Downsampling Data and Different Grid Sizes

To investigate the influence of the possible downsampling on the aRTA plots as
well as on the time it takes to produce them7, we use the data from the Matlab
implementation of NSGA-II, as submitted to the BBOB-2016 workshop, on the
example of the f1 function (sphere - sphere). Without downsampling, the 10
instances of the data have 6755 to 9710 non-dominated solutions per instance

6 A single function/dimension combination with 10 instances produces up to 930 MB
of data.

7 All experiments were performed on an Intel Core i7-5600U CPU Windows 7 laptop
with 8 GB of RAM.

https://1c22851.com


112 D. Brockhoff et al.

only first 10n evaluations considered only first 102n evaluations considered

only first 103n evaluations considered only first 104n evaluations considered

only first 105n evaluations considered only first 106n evaluations considered

Fig. 3. Influence of the maximal number of function evaluations considered on the aver-
age runtime plots for GA-MULTIOBJ-NSGA-II on function f16 (separable ellipsoid -
Rastrigin) in dimension 5. Shown are, from top left to bottom right, the aRTA function
plots when only the first 10n, 102n, 103n, 104n, 105n, and 106n function evaluations
are considered.

(78,318 solutions in total), and it takes about 29 min to produce the single aRTA
plot with 200 × 200 gridpoints, see Fig. 4. The provided source code is certainly
not optimized for speed, but a runtime to produce a single aRTA plot of about
half an hour is, of course, not acceptable in practice. With downsampling, i.e.
taking only into account a single solution per grid cell, the time to produce the



The Average Runtime Attainment Function 113

50x50 grid, no downsampling 50x50 grid with downsampling

100x100 grid with downsampling 150x150 grid with downsampling

200x200 grid with downsampling 250x250 grid with downsampling

Fig. 4. First row: Downsampling the input data does not change the plot if per grid
cell the solution with the lowest function evaluations count is kept. All other plots show
the influence of the grid size on the aRTA plots, from a 50× 50 grid, which takes about
6 s to produce, up to a 250× 250 grid, which takes about 6.5 min to produce.

same plot can be reduced significantly. In order to further decrease the time to
produce a single aRTA plot, we can trade the runtime with accuracy and change
the grid size. This results in the following runtimes:



114 D. Brockhoff et al.

– ca. 6.5 min for a 250× 250 grid (826–1062 solutions per instance8), down from
about 49 min without downsampling,

– ca. 3.5 min for a 200× 200 grid (685–905 solutions per instance), down from
about 29 min without downsampling,

– ca. 1.5 min for a 150× 150 grid (523–698 solutions per instance), down from
about 15 min without downsampling,

– ca. 32 s for a 100× 100 grid (370–483 solutions per instance), down from about
7 min without downsampling, and to

– ca. 6 s for a 50× 50 grid (173–244 solutions per instance), down from about
1.5 min without downsampling.

When comparing the actual aRTA plots of Fig. 4 for the different grid sizes, we
observe that increasing the number of grid cells increases the accuracy while
an increase from the 200× 200 to the 250× 250 grid is hardly visible. As a
good trade-off between accuracy and time to produce the plots, we therefore
recommend using downsampling and the 200× 200 grid as default, which is used
for all plots in the remainder of the paper.

4.3 A Few Examples of Algorithm Comparisons with aRTA
Function Plots

In this last section, we investigate some of the data, submitted to the BBOB
2016 workshop, for which participants were asked to benchmark their favorite
algorithm on the bbob-biobj test suite via the COCO platform. The plots
of the aRTA in Figs. 6, 7, and 8 can be seen as supplements to the empirical
cumulative distribution functions (ECDFs), provided by the COCO platform by
default. Figure 5 for example shows the ECDF of the runtimes for the algorithms
RS-5, MO-DIRECT-hv-rank, GA-MULTIOBJ-NSGA-II, and SMS-EMOA-PM
to reach 58 target hypervolume indicator values on the 5-dimensional sphere -
sphere problem (f1). RS-5 is thereby a simple random search within the domain
[−5, 5] [2], MO-DIRECT-hv-rank is an extension of the DIviding RECTangles
approach to multiobjective optimization [15], GA-MULTIOBJ-NSGA-II is the
default Matlab implementation of the standard NSGA-II [1], and SMS-EMOA-
PM is the standard SMS-EMOA variant with polynomial mutation and SBX
crossover [3]. The random search will be used here as a reference algorithm to
which the other three algorithms are compared to.

If we look carefully at Fig. 5, we see that for this particular problem, MO-
DIRECT-hv-rank is at all times better than RS-5, SMS-EMOA-PM is worse
in the beginning (because it initializes its population in the much larger space
[−100, 100]) and better in the end compared to RS-5, and finally the NSGA-II
is better in the very beginning, then worse, and finally better again than RS-5.
Figures 6, 7, and 8 show the corresponding aRTA plots for the single algorithms
as well as the corresponding aRTA ratio plots—displaying the same trends of
8 Note that it is not necessarily the case that the instance with the smallest (largest)

number of solutions recorded results in the smallest (largest) set of downsampled
points.



The Average Runtime Attainment Function 115

Fig. 5. Empirical cumulative distribution function of the runtimes of four algorithms to
reach 58 target values on the bbob-biobj function f1 (sphere - sphere) in dimension 5.

Fig. 6. Average runtime plots for RS-5 (Algorithm A, top left) and MO-DIRECT-hv-
rank (Algorithm B, top right) together with the corresponding aRTA ratio plot (bottom
row, left: colored, right: optimized for grayscale) on the 5-dimensional bbob-biobj

function f1.



116 D. Brockhoff et al.

when an algorithm is better than another and in addition also where in objective
space and by how much.

A large difference between the shown algorithms lie in particular in their
different initialization strategies. While the random search samples always uni-
formly at random in the set [−5, 5]n with n being the search space dimen-
sion, SMS-EMOA-PM samples its initial population from the much larger space
[−100, 100]n. The NSGA-II variant, displayed here, samples all but the first
solution in its initial population also from [−100, 100]n and the first solution
according to an isotropic Gaussian distribution around the search space origin.
MO-DIRECT-hv-rank, finally, evaluates the search space origin as first solution.
These different initialization strategies have a large impact on the algorithm
performance during the first evaluations and beyond, which can be seen both in
the ECDFs of Fig. 5 and the aRTA function plots. For the larger budgets and
therefore areas close to the Pareto front in the aRTA (ratio) function plots, the
initialization strategy seems to have no influence anymore and it is the algo-
rithm’s ability to approximate the Pareto front well which plays the biggest role
in both the ECDFs and the aRTA plots.

Fig. 7. Average runtime plots for RS-5 (Algorithm A, top left) and SMS-EMOA-PM
(Algorithm B, top right) together with the corresponding aRTA ratio plot (bottom
row, left: colored, right: optimized for grayscale) on the 5-dimensional bbob-biobj

function f1.



The Average Runtime Attainment Function 117

Fig. 8. Average runtime plots for RS-5 (Algorithm A, top left) and GA-MULTIOBJ-
NSGA-II (Algorithm B, top right) together with the corresponding aRTA ratio
plot (bottom row, left: colored, right: optimized for grayscale) on the 5-dimensional
bbob-biobj function f1.

5 Conclusion

We have proposed the average runtime attainment (aRTA) function as an alter-
native to the empirical attainment function to evaluate performance of multiob-
jective optimizers. In contrast to the latter, the aRTA function displays quan-
titative measurements of when the region that weakly dominates an objective
vector z was reached for the first time. We have illustrated a simple display of the
aRTA function (and of the aRTA ratio function for comparing two algorithms)
on a grid using some data from the COCO platform.

Two shortcomings of the current implementation must be mentioned. The
running time of the code that produces exact plots on an objective space grid
is relatively high for practical purposes (in the order of minutes) even when the
number of input solutions is downsampled to a single solution per grid cell and
per instance. In addition, the displayed data, resulting from the COCO platform,
contains results from 10 different instances of the same problem with potential
discrepancies in the objective space. Here, the proposed aRTA function would
be even more useful (and interpretable) if applied to data from independent runs
on the same problem instance.



118 D. Brockhoff et al.

Last, let us discuss the generalization of the aRTA function displays to a
higher number of objectives. While their definition is not restricted to two objec-
tive functions and their computation on a similar grid in higher dimension is pos-
sible with the same computational complexity per grid point, the aRTA function
cannot be practically displayed in the same way as for two-objective problems:
already for a three-dimensional grid, any display can only show 2-dimensional
cuts through the grid or the surfaces of all points with a certain, predefined aRTA
function value. We therefore expect the aRTA function to be less informative in
higher dimensions than for two-objective problems as showcased here.

Acknowledgments. The authors acknowledge the support of the French National
Research Agency (ANR) within the Modèles Numérique project “NumBBO – Analysis,
Improvement and Evaluation of Numerical Blackbox Optimizers” (ANR-12-MONU-
0009). In addition, this work is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation program under grant agree-
ment No. 692286. This work was partially funded also by the Slovenian Research
Agency under research program P2-0209. We finally thank the anonymous reviewers
for their valuable comments.

References

1. Auger, A., Brockhoff, D., Hansen, N., Tušar, D., Tušar, T., Wagner, T.: Bench-
marking MATLAB’s Gamultiobj (NSGA-II) on the bi-objective BBOB-2016 test
suite. In: GECCO (Companion) Workshop on Black-Box Optimization Bench-
marking (BBOB 2016), pp. 1233–1239. ACM (2016)

2. Auger, A., Brockhoff, D., Hansen, N., Tušar, D., Tušar, T., Wagner, T.:
Benchmarking the pure random search on the bi-objective BBOB-2016 testbed.
In: GECCO (Companion) Workshop on Black-Box Optimization Benchmarking
(BBOB 2016), pp. 1217–1223. ACM (2016)

3. Auger, A., Brockhoff, D., Hansen, N., Tušar, D., Tušar, T., Wagner, T.: The impact
of variation operators on the performance of SMS-EMOA on the bi-objective
BBOB-2016 test suite. In: GECCO (Companion) Workshop on Black-Box Opti-
mization Benchmarking (BBOB 2016), pp. 1225–1232. ACM (2016)

4. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91, 201–213 (2002)

5. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of
stochastic multiobjective optimizers. In: Voigt, H.-M., Ebeling, W., Rechenberg,
I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer,
Heidelberg (1996). doi:10.1007/3-540-61723-X 1022

6. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assess-
ment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele,
L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993,
pp. 213–225. Springer, Heidelberg (2001). doi:10.1007/3-540-44719-9 15

7. Hansen, N., Auger, A., Brockhoff, D., Tušar, D., Tušar, T.: COCO: performance
assessment. CoRR abs/1605.03560 (2016). http://arxiv.org/abs/1605.03560

8. Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform
for comparing continuous optimizers in a black-box setting. CoRR abs/1603.08785
(2016). http://arxiv.org/abs/1603.08785

http://dx.doi.org/10.1007/3-540-61723-X_1022
http://dx.doi.org/10.1007/3-540-44719-9_15
http://arxiv.org/abs/1605.03560
http://arxiv.org/abs/1603.08785


The Average Runtime Attainment Function 119

9. Hoos, H., Stützle, T.: Evaluating Las Vegas algorithms: pitfalls and remedies. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pp. 238–245. Morgan Kaufmann Publishers Inc. (1998)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, San Francisco (2004)

11. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiaran-
dini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of
Optimization Algorithms, pp. 209–222. Springer, Heidelberg (2010). Chap. 9

12. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J.
Optim. 20(1), 172–191 (2009). Preprint available as Mathematics and Computer
Science Division, Argonne National Laboratory, Preprint ANL/MCS-P1471-1207,
May 2008

13. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680
(1946)

14. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box
optimization benchmarking (bbob-biobj) test suite. CoRR abs/1604.00359 (2016).
http://arxiv.org/abs/1604.00359

15. Wong, C., Al-Dujaili, A., Sundaram, S.: Hypervolume-based DIRECT for multi-
objective optimisation. In: GECCO (Companion) Workshop on Black-Box Opti-
mization Benchmarking (BBOB 2016), pp. 1201–1208. ACM (2016)

http://arxiv.org/abs/1604.00359

	Quantitative Performance Assessment of Multiobjective Optimizers: The Average Runtime Attainment Function
	1 Introduction
	2 Preliminaries
	2.1 Empirical Attainment Function
	2.2 Expected Runtime (ERT) and Average Runtime (aRT)

	3 Average Runtime Attainment Functions
	3.1 Average Runtime Attainment Function
	3.2 Average Runtime Attainment Ratio Function
	3.3 What Is Collected and Exploited?

	4 Numerical Examples from COCO
	4.1 The Influence of the Maximal Budget of Function Evaluations
	4.2 The Influence of Downsampling Data and Different Grid Sizes
	4.3 A Few Examples of Algorithm Comparisons with aRTA Function Plots

	5 Conclusion
	References


