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When attempting to solve an optimization problem, the choice of which opti-
mization algorithm to use is crucial for obtaining satisfying results in a limited
time. It is, therefore, necessary to develop a method that identifies which algo-
rithm performs best on a particular optimization problem. The task of selecting
a single algorithm that performs best for a given optimization problem is called
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Abstract. Predicting algorithm performance is crucial for selecting the
best performing algorithm for a given optimization problem. While some
research on this topic has been done for single-objective optimization, it
is still largely unexplored for constrained multiobjective optimization. In
this work, we study two methodologies as candidates for predicting algo-
rithm performance on 2D constrained multiobjective optimization prob-
lems. The first one consists of using state-of-the-art exploratory land-
scape analysis (ELA) features, designed specifically for constrained mul-
tiobjective optimization, as input to classical machine learning methods,
and applying the resulting models to predict the performance classes.
As an alternative methodology, we analyze an end-to-end deep neu-
ral network trained to predict algorithm performance from a suitable
problem representation, without relying on ELA features. The experi-
mental results obtained on benchmark problems with three multiobjec-
tive optimizers show that neither of the two methodologies is capable
of substantially outperforming a dummy classifier. This suggests that,
with the current benchmark problems and ELA features, predicting algo-
rithm performance in constrained multiobjective optimization remains a
challenge.

Keywords: Constrained multiobjective optimization - Exploratory
landscape analysis + Algorithm performance prediction + Empirical
cumulative distribution function - Machine learning - Deep learning

Introduction

the algorithm selection task.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 310-325, 2024.
https://doi.org/10.1007/978-3-031-56855-8_19

)


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_19&domain=pdf
http://orcid.org/0000-0002-5549-164X
http://orcid.org/0009-0006-6849-4088
http://orcid.org/0000-0003-0299-4160
http://orcid.org/0000-0002-6495-006X
http://orcid.org/0000-0003-4428-4255
https://doi.org/10.1007/978-3-031-56855-8_19

Algorithm Performance in Constrained Multiobjective Optimization 311

Solving an algorithm selection task requires a collection of algorithms from
which to choose. It also requires a collection of diverse problems, which elicit
different performance out of the algorithms. Constrained multiobjective prob-
lems (CMOPs) are both lesser in quantity and diversity and greater in complex-
ity than unconstrained and/or single objective problems. Therefore, solving the
constrained multiobjective algorithm selection task is an ambitious goal. As a
first step towards solving it, we aim to develop a method for predicting algorithm
performance on a given CMOP.

In recent years, many researchers have tried to predict algorithm perfor-
mance [21,28]. They generally do so by extracting exploratory landscape analy-
sis (ELA) features from a population of solutions. These are then used as input
to a machine learning classifier, which identifies the optimization algorithm that
performs best on the given problem. Many ELA features have been proposed for
single-objective optimization, and the package flacco [11] contains a broad col-
lection of these. However, ELA features for more complex problems, like CMOPs,
are still under development, with only a few related works [2,15,30]. This adds
to the difficulty of predicting algorithm performance on these problems.

In a previous work [3], we tried to predict algorithm performance on CMOPs
by using the state-of-the-art collection of CMOP ELA features proposed in [2].
These features were used as inputs into classical machine learning regression
models. We attempted to predict algorithm performance on three benchmark
suites, for 2D, 3D, and 5D CMOPs. The target of our prediction task was the
area under an algorithm performance curve (explained in Sect. 2.3). However, the
obtained results were not encouraging and, therefore, we are trying to improve
upon them. In this work, we have increased the number of CMOPs used in the
learning process, changed the prediction target and utilized an end-to-end deep
neural network (DNN) methodology that does not use ELA features.

The paper is further organized as follows. In Sect. 2, we introduce the back-
ground of our study. In Sect. 3, we explain the applied methodology. In Sect. 4
we present the experimental setup and, in Sect. 5, the obtained results. Finally,
in Sect. 6, we provide a conclusion and outline ideas for future work.

2 Background

In this section, we introduce constrained multiobjective optimization, explain
ELA for this kind of optimization, present the recently proposed performance
indicator specifically developed for CMOPs, and outline deep neural networks.

2.1 Constrained Multiobjective Optimization
A CMOP is formulated as:

minimize f,,(x), m=1,..., M,
subject to g¢;(x) <0, j=1,...,J, (1)
he(x)=0, k=1,.. K,
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where x = (21,...,2p) is a D dimensional solution vector, f,,(x) are the objec-
tive functions, and g;(x) and hi(x) are the inequality and equality constraint
functions, respectively. M is the number of objectives, and J and K are the
number of inequality and equality constraints, respectively.

A solution x is feasible, if it satisfies all constraints, g;(x) < 0,forj=1,...,J
and hi(x) =0, for k =1,..., K. A feasible solution x is said to dominate another
feasible solution y if fi,(x) < fi(y) for all 1 <m < M, and f,(x) < fm(y) for
at least one 1 < m < M. A feasible solution x* is a Pareto-optimal solution if
there exists no feasible solution x € S that dominates x*. All feasible solutions
constitute the feasible region F. All nondominated feasible solutions form the
Pareto set S,, and the image of the Pareto set in the objective space is the
Pareto front, P, = {f(x) | x € So}.

2.2 Exploratory Landscape Analysis for Constrained Multiobjective
Optimization

ELA is a methodology whereby features of an optimization problem are extracted
from a sample of solutions [19]. These features are generally expertly designed
statistical relations between solutions. While many ELA feature sets have been
designed for single-objective optimization problems, only a few exist for CMOPs.

For CMOPs, state-of-the-art features were collected by Alsouly et al. [2].
They proposed additional features on top of the fast-computing features for
CMOPs from the related work. The combined set of features is divided into three
groups that describe: the multiobjective landscape, the violation landscape, and
a combination of the two — the multiobjective violation landscape.

Features describing the objectives and their internal relations belong to the
multiobjective landscape group. Global features in this group include the propor-
tion of unconstrained Pareto optimal solutions, the hypervolume of the uncon-
strained Pareto front, and the correlation between the objective values, among
others. Statistics on the distance between random walk neighbors in the objective
space make up the random walk features.

Features describing the problem constraints belong to the violation landscape
group. Global features in this group are devoted to global constraint violation
statistics, while the random walk features consist of constraint violation statistics
between random walk neighbors.

Features describing the relations between the objective and the constraints
belong to the multiobjective violation landscape group. Global features include
the proportion of feasible solutions, the proportion of Pareto optimal solutions,
the hypervolume, statistics on the correlations between objectives and con-
straints, and others. Statistics on the dominance relations between random walk
neighbors make up the random walk features.

2.3 Empirical Cumulative Distribution Functions

In constrained multiobjective optimization, there is a drawback to using the
hypervolume of feasible solutions as the quality indicator, because it does not
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record algorithm performance until feasible solutions are reached. However,
recently, [29] introduced a new quality indicator for constrained multiobjective
optimization, Icmop, to address the gap in this area. The new indicator gen-
eralizes the hypervolume-based quality indicator Iy from [10]. Notably, both
Iyvy and Icmop assume that low quality indicator values indicate better sets
of solutions and vice versa. Icpmop can be defined as follows:

1. When all solutions in the set are infeasible, the Icyop quality indicator takes
on the smallest constraint violation of all solutions in the set, plus a threshold
T*.

2. When the set contains at least one feasible solution, the quality indicator
equals the value of Iyy, bounded above by the threshold 7%, i.e., it equals

miH{IHv+, T*}.

The threshold value 7* ensures that an infeasible solution will always be deemed
worse than a feasible one.

Also, to be able to compare different CMOPs, one first needs to normalize
the Iyy. value and the constraint violation value, based on a sample of 100
solutions. The details of how this is done can be found in [29].

For algorithm performance measurement during the algorithm run, we track
the number of function evaluations (runtimes) needed to reach a particular qual-
ity indicator value (target). This is carried out for a set of targets and the
runtimes are visualized using the Empirical Cumulative Distribution Function
(ECDF) [10]. The ECDF shows the proportion of targets achieved by the algo-
rithm at a certain runtime and increases as the algorithm achieves further tar-
gets. The maximum value achievable by an algorithm is 1, meaning it reached
all targets. One way to express algorithm performance in a single number is by
computing the area under the curve of the ECDF — larger values correspond to
a better/faster algorithm performance.

2.4 Deep Neural Networks

Deep Neural Networks (DNNs) are one of the most widely used prediction models
at the moment. For more details on how they work, refer to [20]. Here, we briefly
introduce the three DNN architectures used in our work. They are as follows:

— A feedforward neural network (FNN) is a standard deep neural network, con-
sisting of layers whose neurons are fully connected to the neurons from the
neighboring layers.

— Convolutional neural networks are DNNs consisting of convolutional layers
followed by activation layers and, sometimes, pooling layers. They are most
often used in computer vision, as they are good at describing the local prop-
erties of the images, using filters that can be of different sizes.

— An autoencoder is a DNN architecture that consists of an encoder and a
decoder part. These parts are usually symmetrical, therefore, the input and
the output of an autoencoder neural network have the same shape. The goal
of this neural network architecture is to compress the data. Thus, the encoder
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compresses the data, and the decoder decompresses it. Essentially, the autoen-
coder can also be an FNN or a convolutional neural network as long as it
performs data compression.

3 Methodology

In this section, we present the methods applied in this study. First, we explain
how the ECDF of the Igyop indicator was used to define three different classifi-
cation tasks. We then describe various methods for solving these tasks — machine
learning methods that predict algorithm performance based on ELA features and
the newly proposed end-to-end DNN, which circumvents the ELA features by
using the problem landscape samples directly.

3.1 Classification Tasks

The ECDF of the performance indicator, described in Sect.2.3, shows the
number of targets achieved at each evaluation step. As explained in [29], to
compare targets between different CMOPs, we normalize the targets using a
sample of 100 solutions, and we set 7* = 1. Also, the authors state that
a good set of target precision values corresponds to 7¢ = 7" + ¢, where
e € {10P]p € {-5,—4.9,...,0}} U {1l +10P]p € {-5,—-4.9,...,0}}, and 77
is the hypervolume of the true Pareto front, or an approximation of it. We used
the same for our target precision values.

In a previous work [3]|, we were predicting algorithm performance using the
area under the curve of the ECDF. This turned out to be a very difficult regres-
sion task. Therefore, to alleviate it, this work makes two changes to the method-
ology: (1) instead of the area under the curve, we predict the number of eval-
uations needed to reach three chosen target proportions, and (2), we predict
ranges of values instead of exact numbers, transforming a regression task into a
classification one.

More specifically, the target proportions of interest are:

— The number of evaluations needed until a feasible solution is obtained, which
due to the choice of targets, corresponds to satisfying 50% of the targets.

— The number of evaluations needed to satisfy 70% of the targets.

— The number of evaluations needed to satisfy 90% of the targets.

Predicting the exact number of evaluations needed to satisfy a given per-
centage of targets, is difficult. Additional challenges arise from the fact that an
algorithm may never reach the most difficult targets on some of the problems,
which then requires special handling of such cases. Because of this, we group the
number of evaluations into classes and treat their prediction as a classification
task, which is expected to be easier to solve.

The number of evaluations of interest depends on the experimental setup. In
our case, we will be performing at most 24 000 evaluations and use algorithms
with a population size of 200. Therefore, we form the following classes:



Algorithm Performance in Constrained Multiobjective Optimization 315

Class 0: The goal is achieved between 1 and 200 evaluations (in the initial
generation),

Class 1: The goal is achieved between 201 and 2000 evaluations,

— Class 2: The goal is achieved between 2001 and 8 000 evaluations,

— Class 3: The goal is achieved between 8 001 and 24 000 evaluations,

Class 4: The goal is never achieved.

3.2 Classical Machine Learning

For the machine learning part, we use the ELA features outlined in Sect. 2.2 as
input to three classical machine learning algorithms — Decision Trees [16], Ran-
dom Forest Classification [5], and C-Support Vector Classification (SVC) [23].
We also include a dummy model in the comparison, which predicts the most fre-
quent class in the training data. We utilize the scikit-learn implementations
of these methods with default parameter settings [22].

3.3 DNN

Inspired by developments in computer vision, we decided to test whether
methodologies from that field could be used for algorithm performance predic-
tion on CMOPs. Some experiments have already been done in single-objective
optimization [24,26], but they did not show promising results compared to the
results obtained by the well-developed ELA features for single-objective opti-
mization.

For a proof of concept, we limit the dimensionality of the search and objective
spaces to 2D. In this way, no additional manipulation, such as dimensionality
reduction, is required. More specifically, in our approach, we treat the search
space as an image, discretized into 32 x 32 pixels. Each pixel contains the red,
green, and blue color components, representing the two objectives and the overall
constraint violation, respectively.

Data Generation. To generate images of the search spaces, we use the fol-
lowing sampling technique. First, we divide the 2D search space into “pixels”, by
splitting each dimension of the search space into 32 equally sized intervals. Then,
for each pixel, we randomly generate a solution within it, and use its objective
values and the overall constraint violation value to assign the color to the pixel.
A visual representation of a sample generated using this technique is shown in
Fig. 1.

DNN Architecture. The architecture of the DNN is composed of a convolu-
tional neural network autoencoder and an FNN. The encoder part of the autoen-
coder is used as input to the FNN, whose target is the prediction class defined
in Sect. 3.1. The DNN architecture is shown in Fig. 2.

Each flat rectangle in the figure represents one layer of the DNN architecture.
It contains information about the keras library [1] layer class that we used on
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Fig. 1. An example sample of size 32 x 32 for the DNN.

the left side, and the shape of its input/output on the right side. For example,
the first layer in the DNN is an InputLayer, and it takes as input images of size
32 x 32 with 3 channels.

The top part of the figure presents the encoder, which consists of three pairs
of convolutional and max-pooling layers. The bottom part is divided into the
decoder (on the left) and the FNN (on the right). The decoder is symmetrical
to the encoder, whereas the FNN contains Dense and Dropout layers. The last
layer in the FNN has an output of 5 neurons, each one assigned to one of the
prediction classes presented in Sect. 3.1.

The idea behind this architecture is that, by providing the autoencoder with
the same image as input and output, we force it to encode the input image so that
the least amount of information is lost in the training process. The encoded part
can be seen as landscape features that the autoencoder automatically extracts
from the input data.

To cause the DNN to encode the properties that are useful for predicting
algorithm performance, we use the encoded part as input to an FNN. Both parts
of the DNN are trained simultaneously, with a combined loss function (mean
absolute error for the decoder, and categorical cross-entropy for the FNN).

Data Preprocessing. The objectives and overall constraint violation have dif-
ferent value ranges across different problems. For this reason, as a preprocessing
step, we normalize each of these functions. The min-max normalization proce-
dure applies the normalization over all samples of a given problem, using the
minimum and maximum value of the given objective. Furthermore, we normal-
ize the constraints by assigning a 0 value to the feasible solutions, and a 1 value
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Fig. 2. The applied DNN architecture consisting of the encoder, decoder and FNN.

MW3

MW10 DC1-DTLZ1

DC1-DTLZ3

Fig. 3. Four example CMOP inputs, as images, for use with the DNN. Red represents
the value of the first objective function, green the value of the second objective func-
tion, and blue the constraint violation. Prior to this encoding, the objective values are
normalized using the minimum and maximum objective values of the problem samples.

(Color figure online)
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to the infeasible solutions. Example visualizations of several input images from
different CMOPs are presented in Fig. 3.

Note that there are many ways to normalize the functions. For example, one
other possibility to normalize the overall constraint violation is to use its the min-
imum and maximum values. However, after some preliminary experimentation
with different normalization techniques, we found that the obtained algorithm
performance prediction results were comparable. Thus, in this paper, we only
present the results derived from the normalization techniques described in the
paragraph above.

In constrained multiobjective optimization, the order of the objectives should
not be important. Thus, we generate two images for each input sample — one
where the first objective is assigned the red color and the second objective green,
and another image where the ordering is reversed. The blue color always encodes
the constraint violation.

DNN Settings. We used the ReLu activation function for each hidden layer
in the DNN. We set the batch size to 1000, the number of epochs to 100, and
we used the Adam optimizer [13] with a learning rate of 0.0001.

4 Experimental Setup

Our work is focused on bi-objective CMOPs with 2D search spaces. We used six
benchmark suites in the experiments: MW [17], C-DTLZ [12], CTP [7], DAS-
CMOP [9], and DC-DTLZ [14], as well as three individual benchmark problems:
BNH [4], TNK [27], and SRN [25]. The total number of CMOPs with two vari-
ables and two objectives from these suites is 36 (see Table1 for a break-down
over problem suites).

Table 1. The number of bi-objective 2D CMOPs per suite used in this study.

MW | C-DTLZ | CTP | DAS-CMOP | DC-DTLZ | BNH | TNK | SRN
8 5 8 6 6 1 1 1

For the purpose of predicting algorithm performance, three multiobjective
optimization algorithms were tested, each with a different constraint handling
technique. These algorithms were NSGA-IIT [12], MOEA /D-IEpsilon 8], and C-
TAEA [14]. To handle the variation of the results due to the stochastic nature
of the algorithms, 31 runs of each algorithm were conducted on each problem.
With this approach, algorithm performance can be estimated more accurately.
To extract the target classes, we used the mean of the ECDF values over all 31
algorithm runs. Additionally, we applied the same population size and number
of generations to all algorithms, allowing for a fair comparison of results. The
population size was set to 200, and the number of generations to 120. To generate
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reference vectors for NSGA-IIT and MOEA /D-IEpsilon, we used the Das-Denis
approach [6]. The number of reference vectors was 200 for each algorithm.

The ELA features were calculated stochastically, whereby a different sam-
ple of solutions was selected each time the feature calculation is begun. This
was dealt with by creating 100 samples using Latin hypercube sampling, which
resulted in 100 sets of features (i.e., learning instances) for each problem. Simi-
larly, we created 100 samples per problem for the DNN method using the sam-
pling described in Sect. 3.3.

For easier reproducibility of the stochastic learning models, we report that
the random number generator was seeded with the value of ten to obtain the
results in the following section. Moreover, experiments with alternative seeds
resulted in comparable results.

To evaluate the performance of each classifier, we used the leave-one-problem-
out evaluation methodology. In this approach, no information about the target
problem is available in the training data. Thus, all instances of a problem are
used as test data, and the instances from the rest of the problems as training
data. This process is repeated for each problem and the average mean absolute
error is used as an evaluation metric.

5 Results

The classification accuracy for the desired target percentages for all learning
methods is presented in Table 2. From the results we can see that none of the
learning models drastically outperforms the dummy classifier. The only exception
is the Random forest model. This performs better than the dummy classifier in
most cases, except for MOEA /D and C-TAEA when predicting the evaluation
class with at least 90% of the targets achieved.

To analyze more thoroughly the predictions by the Random forest model,
we provide its confusion matrices for all three classification tasks in Fig.4. In
addition, Fig. 5 shows problem samples in the ELA feature space, reduced to 2D
using the t-distributed stochastic neighbor embedding (t-SNE) method [18].

In Table 2, we can see that the classification accuracy is the same across all
optimization algorithms when tackling the first classification task, that being
to achieve 50% of the targets, i.e., to reach the border between the infeasible
and feasible regions. An explanation for this can be derived from the confusion
matrices in Fig. 4. These show that most of the optimization algorithms find a
feasible solution in the initial population. They are, therefore, labeled with class
0. Otherwise, they achieve a feasible solution in at most 2000 evaluations.

As shown in Fig. 5, with t-SNE dimension reduction, the instances from the
same CMOP form clusters. This means the ELA features from the same problem
do not provide the diversity required by the machine learning models. Conse-
quently, during prediction, the learning models usually have either a 100% or
0% accuracy for a given CMOP. This is manifested in the nearly fully rounded
results present in the confusion matrices in Fig.4. A similar behavior can be
observed for the DNN method, although this method does not rely on ELA
features.
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Table 2. Classification accuracy of the learning models predicting the algorithm per-
formance classes.

Targets | Classifier NSGA-IIT | MOEA/D | C-TAEA
50% Dummy 0.916 0.916 0.916
Decision tree 0.916 0.916 0.916
Random Forest | 0.944 0.944 0.944
SVC 0.888 0.888 0.888
DNN 0.916 0.916 0.916
70% Dummy 0.416 0.416 0.583
Decision tree 0.446 0.376 0.658
Random Forest | 0.576 0.549 0.674
SvVC 0.406 0.406 0.588
DNN 0.381 0.304 0.583
90% Dummy 0.638 0.666 0.722
Decision tree 0.581 0.668 0.687
Random Forest | 0.677 0.638 0.703
SvC 0.623 0.650 0.727
DNN 0.638 0.666 0.722

The DNN, proposed as a novelty in this work, unfortunately never outper-
forms the dummy classifier and sometimes performs even worse than it, although
the loss was observed to decrease during training. Worse performance is, for
example, seen when predicting the number of evaluations needed by the NSGA-
IIT and MOEA /D algorithms to achieve 70% of the targets. A reason for the poor
DNN performance could be that we used only 35 CMOPs for training. Although
we generated 100 samples for each problem, this may still not provide enough
diversity and the DNN is not able to learn the patterns of the search space.
Namely, it is known that DNN’s need huge amounts of data to learn adequately.
The classical machine learning models, on the other hand, are designed to be
able to handle small amounts of data, but, as stated before, their performance
was not found to be promising either.

A reason for poor performance of the classical machine learning models on
CMOPs could be that, just like the DNN, they also need more data (although
probably less so than the DNN). The small number of CMOPs used for training
is certainly a difficulty, but the similarity of some properties across different
CMOPs is also a potential reason for the low prediction performance and (likely)
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Fig. 4. Confusion matrices of the random forest models for the three desired target per-
centages. Each confusion matrix refers to the algorithm performance classes explained
in Sect. 3.1 in more detail.

overfitting of the data. For example, as shown in Fig.3, DC1-DTLZ1 and DC1-
DTLZ3 have very similar landscapes, and, given that the order of objectives in
CMOPs is insignificant, the red and the green sectors may be swapped.

Another reason for the poor performance of feature-based performance pre-
diction might be the recency of research into ELA features for CMOPs. Possibly
not all informative characteristics of CMOPs are included in the feature set, as

of yet.
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the classes representing the number of evaluations needed to achieve a percentage of

targets.

(Color figure online)

6 Conclusion

In this work, we tried to improve upon our previous attempt at algorithm perfor-
mance prediction for three widely used multiobjective optimization algorithms,
NSGA-III, MOEA /D-IEpsilon, and C-TAEA, on 2D, 3D, and 5D CMOPs. Pre-
viously, we worked on predicting the area under the curve of the ECDF for the
Icmop quality indicator proposed in [29]. We used classical machine learning
regression models, whose inputs were the ELA features proposed in [2]. Unfortu-
nately, the obtained results were not encouraging. Consequently, in this work, we
focused on 2D CMOPs. We used a total of nine benchmark suites and problems,
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which resulted in 36 CMOPs. This is significantly larger than in the previous
work where only 13 were used. Furthermore, we changed the prediction task — in
this work, we were predicting the number of evaluations needed to achieve 50%,
70%, and 90% of the ECDF targets. Moreover, because predicting the number
of evaluations is a hard task, we discretized the number of evaluations needed
into five classes.

The results from the previous work left questions as to whether the prediction
performance was poor because of the small number of CMOPs used for training,
or the underdevelopment of the CMOP ELA feature set. To eliminate the second
issue, we proposed an end-to-end DNN, that does not include ELA features to
predict algorithm performance. As far as we are aware, this is the first time an
end-to-end DNN has been used to predict algorithm performance on CMOPs.

Unfortunately, the newly proposed method did not outperform the dummy
prediction model. Nonetheless, the reason for this might be that using merely 36
CMOPs is not enough for training a DNN. Thus, this left us with the dilemma of
poor algorithm performance prediction — are more CMOPs required to predict
algorithm performance, or better ELA features? Moreover, the tested evolution-
ary algorithms performed comparably on the benchmark problems. This calls
for involving a larger set of algorithms that would potentially show different
performance.

In the future, we plan to extend our research on end-to-end DNNs for algo-
rithm performance prediction by applying publicly available pretrained DNNs.
The idea is to enhance the performance of the proposed architecture. This is a
standard practice in deep learning when dealing with small datasets and thus,
although none of the pretrained models was trained on problem landscapes, their
learned patterns might still help with our prediction task.

Another way forward is to utilize a larger CMOP benchmark suite. This
can be constructed by combining the objectives and constraints of constrained
single-objective problems from various benchmark suites. This way, we could
include a much larger number of CMOPs in the data, possibly helping both
the classical machine learning methods and the deep learning methods better
predict algorithm performance. A drawback to this approach is that running the
algorithms 31 times for each problem combination would be a time-consuming
task. It is possible, however, that already a small proportion of the problem
combinations would contribute diversity to the extended benchmark suite.

Ideally, in future work, both the ideas stated above would be combined.
Tests on an extended CMOP benchmark suite are sure to answer whether more
CMOPs are needed to better predict algorithm performance, while the inclu-
sion of knowledge from pretrained DNNs is likely to provide insights into the
possibility of improving the current ELA features for CMOPs.
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