
Predicting Algorithm Performance
in Constrained Multiobjective

Optimization: A Tough Nut to Crack

Andrejaana Andova1,2(B) , Jordan N. Cork1,2 , Aljoša Vodopija1,2 ,
Tea Tušar1,2 , and Bogdan Filipič1,2

1 Jožef Stefan Institute, Ljubljana, Slovenia
{andrejaana.andova,jordan.cork,aljosa.vodopija,tea.tusar,

bogdan.filipic}@ijs.si
2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. Predicting algorithm performance is crucial for selecting the
best performing algorithm for a given optimization problem. While some
research on this topic has been done for single-objective optimization, it
is still largely unexplored for constrained multiobjective optimization. In
this work, we study two methodologies as candidates for predicting algo-
rithm performance on 2D constrained multiobjective optimization prob-
lems. The first one consists of using state-of-the-art exploratory land-
scape analysis (ELA) features, designed specifically for constrained mul-
tiobjective optimization, as input to classical machine learning methods,
and applying the resulting models to predict the performance classes.
As an alternative methodology, we analyze an end-to-end deep neu-
ral network trained to predict algorithm performance from a suitable
problem representation, without relying on ELA features. The experi-
mental results obtained on benchmark problems with three multiobjec-
tive optimizers show that neither of the two methodologies is capable
of substantially outperforming a dummy classifier. This suggests that,
with the current benchmark problems and ELA features, predicting algo-
rithm performance in constrained multiobjective optimization remains a
challenge.

Keywords: Constrained multiobjective optimization · Exploratory
landscape analysis · Algorithm performance prediction · Empirical
cumulative distribution function · Machine learning · Deep learning

1 Introduction

When attempting to solve an optimization problem, the choice of which opti-
mization algorithm to use is crucial for obtaining satisfying results in a limited
time. It is, therefore, necessary to develop a method that identifies which algo-
rithm performs best on a particular optimization problem. The task of selecting
a single algorithm that performs best for a given optimization problem is called
the algorithm selection task.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 310–325, 2024.
https://doi.org/10.1007/978-3-031-56855-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_19&domain=pdf
http://orcid.org/0000-0002-5549-164X
http://orcid.org/0009-0006-6849-4088
http://orcid.org/0000-0003-0299-4160
http://orcid.org/0000-0002-6495-006X
http://orcid.org/0000-0003-4428-4255
https://doi.org/10.1007/978-3-031-56855-8_19

Algorithm Performance in Constrained Multiobjective Optimization 311

Solving an algorithm selection task requires a collection of algorithms from
which to choose. It also requires a collection of diverse problems, which elicit
different performance out of the algorithms. Constrained multiobjective prob-
lems (CMOPs) are both lesser in quantity and diversity and greater in complex-
ity than unconstrained and/or single objective problems. Therefore, solving the
constrained multiobjective algorithm selection task is an ambitious goal. As a
first step towards solving it, we aim to develop a method for predicting algorithm
performance on a given CMOP.

In recent years, many researchers have tried to predict algorithm perfor-
mance [21,28]. They generally do so by extracting exploratory landscape analy-
sis (ELA) features from a population of solutions. These are then used as input
to a machine learning classifier, which identifies the optimization algorithm that
performs best on the given problem. Many ELA features have been proposed for
single-objective optimization, and the package flacco [11] contains a broad col-
lection of these. However, ELA features for more complex problems, like CMOPs,
are still under development, with only a few related works [2,15,30]. This adds
to the difficulty of predicting algorithm performance on these problems.

In a previous work [3], we tried to predict algorithm performance on CMOPs
by using the state-of-the-art collection of CMOP ELA features proposed in [2].
These features were used as inputs into classical machine learning regression
models. We attempted to predict algorithm performance on three benchmark
suites, for 2D, 3D, and 5D CMOPs. The target of our prediction task was the
area under an algorithm performance curve (explained in Sect. 2.3). However, the
obtained results were not encouraging and, therefore, we are trying to improve
upon them. In this work, we have increased the number of CMOPs used in the
learning process, changed the prediction target and utilized an end-to-end deep
neural network (DNN) methodology that does not use ELA features.

The paper is further organized as follows. In Sect. 2, we introduce the back-
ground of our study. In Sect. 3, we explain the applied methodology. In Sect. 4
we present the experimental setup and, in Sect. 5, the obtained results. Finally,
in Sect. 6, we provide a conclusion and outline ideas for future work.

2 Background

In this section, we introduce constrained multiobjective optimization, explain
ELA for this kind of optimization, present the recently proposed performance
indicator specifically developed for CMOPs, and outline deep neural networks.

2.1 Constrained Multiobjective Optimization

A CMOP is formulated as:

minimize fm(x), m = 1, . . . ,M,

subject to gj(x) ≤ 0, j = 1, . . . , J,
hk(x) = 0, k = 1, . . . ,K,

(1)

312 A. Andova et al.

where x = (x1, . . . , xD) is a D dimensional solution vector, fm(x) are the objec-
tive functions, and gj(x) and hk(x) are the inequality and equality constraint
functions, respectively. M is the number of objectives, and J and K are the
number of inequality and equality constraints, respectively.

A solution x is feasible, if it satisfies all constraints, gj(x) ≤ 0, for j = 1, . . . , J
and hk(x) = 0, for k = 1, . . . ,K. A feasible solution x is said to dominate another
feasible solution y if fm(x) ≤ fm(y) for all 1 ≤ m ≤ M , and fm(x) < fm(y) for
at least one 1 ≤ m ≤ M . A feasible solution x∗ is a Pareto-optimal solution if
there exists no feasible solution x ∈ S that dominates x∗. All feasible solutions
constitute the feasible region F . All nondominated feasible solutions form the
Pareto set So, and the image of the Pareto set in the objective space is the
Pareto front, Po = {f(x) | x ∈ So}.

2.2 Exploratory Landscape Analysis for Constrained Multiobjective
Optimization

ELA is a methodology whereby features of an optimization problem are extracted
from a sample of solutions [19]. These features are generally expertly designed
statistical relations between solutions. While many ELA feature sets have been
designed for single-objective optimization problems, only a few exist for CMOPs.

For CMOPs, state-of-the-art features were collected by Alsouly et al. [2].
They proposed additional features on top of the fast-computing features for
CMOPs from the related work. The combined set of features is divided into three
groups that describe: the multiobjective landscape, the violation landscape, and
a combination of the two – the multiobjective violation landscape.

Features describing the objectives and their internal relations belong to the
multiobjective landscape group. Global features in this group include the propor-
tion of unconstrained Pareto optimal solutions, the hypervolume of the uncon-
strained Pareto front, and the correlation between the objective values, among
others. Statistics on the distance between random walk neighbors in the objective
space make up the random walk features.

Features describing the problem constraints belong to the violation landscape
group. Global features in this group are devoted to global constraint violation
statistics, while the random walk features consist of constraint violation statistics
between random walk neighbors.

Features describing the relations between the objective and the constraints
belong to the multiobjective violation landscape group. Global features include
the proportion of feasible solutions, the proportion of Pareto optimal solutions,
the hypervolume, statistics on the correlations between objectives and con-
straints, and others. Statistics on the dominance relations between random walk
neighbors make up the random walk features.

2.3 Empirical Cumulative Distribution Functions

In constrained multiobjective optimization, there is a drawback to using the
hypervolume of feasible solutions as the quality indicator, because it does not

Algorithm Performance in Constrained Multiobjective Optimization 313

record algorithm performance until feasible solutions are reached. However,
recently, [29] introduced a new quality indicator for constrained multiobjective
optimization, ICMOP, to address the gap in this area. The new indicator gen-
eralizes the hypervolume-based quality indicator IHV+ from [10]. Notably, both
IHV+ and ICMOP assume that low quality indicator values indicate better sets
of solutions and vice versa. ICMOP can be defined as follows:

1. When all solutions in the set are infeasible, the ICMOP quality indicator takes
on the smallest constraint violation of all solutions in the set, plus a threshold
τ∗.

2. When the set contains at least one feasible solution, the quality indicator
equals the value of IHV+ bounded above by the threshold τ∗, i.e., it equals
min{IHV+, τ∗}.

The threshold value τ∗ ensures that an infeasible solution will always be deemed
worse than a feasible one.

Also, to be able to compare different CMOPs, one first needs to normalize
the IHV+ value and the constraint violation value, based on a sample of 100
solutions. The details of how this is done can be found in [29].

For algorithm performance measurement during the algorithm run, we track
the number of function evaluations (runtimes) needed to reach a particular qual-
ity indicator value (target). This is carried out for a set of targets and the
runtimes are visualized using the Empirical Cumulative Distribution Function
(ECDF) [10]. The ECDF shows the proportion of targets achieved by the algo-
rithm at a certain runtime and increases as the algorithm achieves further tar-
gets. The maximum value achievable by an algorithm is 1, meaning it reached
all targets. One way to express algorithm performance in a single number is by
computing the area under the curve of the ECDF – larger values correspond to
a better/faster algorithm performance.

2.4 Deep Neural Networks

Deep Neural Networks (DNNs) are one of the most widely used prediction models
at the moment. For more details on how they work, refer to [20]. Here, we briefly
introduce the three DNN architectures used in our work. They are as follows:

– A feedforward neural network (FNN) is a standard deep neural network, con-
sisting of layers whose neurons are fully connected to the neurons from the
neighboring layers.

– Convolutional neural networks are DNNs consisting of convolutional layers
followed by activation layers and, sometimes, pooling layers. They are most
often used in computer vision, as they are good at describing the local prop-
erties of the images, using filters that can be of different sizes.

– An autoencoder is a DNN architecture that consists of an encoder and a
decoder part. These parts are usually symmetrical, therefore, the input and
the output of an autoencoder neural network have the same shape. The goal
of this neural network architecture is to compress the data. Thus, the encoder

314 A. Andova et al.

compresses the data, and the decoder decompresses it. Essentially, the autoen-
coder can also be an FNN or a convolutional neural network as long as it
performs data compression.

3 Methodology

In this section, we present the methods applied in this study. First, we explain
how the ECDF of the ICMOP indicator was used to define three different classifi-
cation tasks. We then describe various methods for solving these tasks – machine
learning methods that predict algorithm performance based on ELA features and
the newly proposed end-to-end DNN, which circumvents the ELA features by
using the problem landscape samples directly.

3.1 Classification Tasks

The ECDF of the performance indicator, described in Sect. 2.3, shows the
number of targets achieved at each evaluation step. As explained in [29], to
compare targets between different CMOPs, we normalize the targets using a
sample of 100 solutions, and we set τ∗ = 1. Also, the authors state that
a good set of target precision values corresponds to τ ε = τ ref + ε, where
ε ∈ {10p|p ∈ {−5,−4.9, . . . , 0}} ∪ {1 + 10p|p ∈ {−5,−4.9, . . . , 0}}, and τ ref

is the hypervolume of the true Pareto front, or an approximation of it. We used
the same for our target precision values.

In a previous work [3], we were predicting algorithm performance using the
area under the curve of the ECDF. This turned out to be a very difficult regres-
sion task. Therefore, to alleviate it, this work makes two changes to the method-
ology: (1) instead of the area under the curve, we predict the number of eval-
uations needed to reach three chosen target proportions, and (2), we predict
ranges of values instead of exact numbers, transforming a regression task into a
classification one.

More specifically, the target proportions of interest are:

– The number of evaluations needed until a feasible solution is obtained, which
due to the choice of targets, corresponds to satisfying 50% of the targets.

– The number of evaluations needed to satisfy 70% of the targets.
– The number of evaluations needed to satisfy 90% of the targets.

Predicting the exact number of evaluations needed to satisfy a given per-
centage of targets, is difficult. Additional challenges arise from the fact that an
algorithm may never reach the most difficult targets on some of the problems,
which then requires special handling of such cases. Because of this, we group the
number of evaluations into classes and treat their prediction as a classification
task, which is expected to be easier to solve.

The number of evaluations of interest depends on the experimental setup. In
our case, we will be performing at most 24 000 evaluations and use algorithms
with a population size of 200. Therefore, we form the following classes:

Algorithm Performance in Constrained Multiobjective Optimization 315

– Class 0: The goal is achieved between 1 and 200 evaluations (in the initial
generation),

– Class 1: The goal is achieved between 201 and 2 000 evaluations,
– Class 2: The goal is achieved between 2 001 and 8 000 evaluations,
– Class 3: The goal is achieved between 8 001 and 24 000 evaluations,
– Class 4: The goal is never achieved.

3.2 Classical Machine Learning

For the machine learning part, we use the ELA features outlined in Sect. 2.2 as
input to three classical machine learning algorithms – Decision Trees [16], Ran-
dom Forest Classification [5], and C-Support Vector Classification (SVC) [23].
We also include a dummy model in the comparison, which predicts the most fre-
quent class in the training data. We utilize the scikit-learn implementations
of these methods with default parameter settings [22].

3.3 DNN

Inspired by developments in computer vision, we decided to test whether
methodologies from that field could be used for algorithm performance predic-
tion on CMOPs. Some experiments have already been done in single-objective
optimization [24,26], but they did not show promising results compared to the
results obtained by the well-developed ELA features for single-objective opti-
mization.

For a proof of concept, we limit the dimensionality of the search and objective
spaces to 2D. In this way, no additional manipulation, such as dimensionality
reduction, is required. More specifically, in our approach, we treat the search
space as an image, discretized into 32 × 32 pixels. Each pixel contains the red,
green, and blue color components, representing the two objectives and the overall
constraint violation, respectively.

Data Generation. To generate images of the search spaces, we use the fol-
lowing sampling technique. First, we divide the 2D search space into “pixels”, by
splitting each dimension of the search space into 32 equally sized intervals. Then,
for each pixel, we randomly generate a solution within it, and use its objective
values and the overall constraint violation value to assign the color to the pixel.
A visual representation of a sample generated using this technique is shown in
Fig. 1.

DNN Architecture. The architecture of the DNN is composed of a convolu-
tional neural network autoencoder and an FNN. The encoder part of the autoen-
coder is used as input to the FNN, whose target is the prediction class defined
in Sect. 3.1. The DNN architecture is shown in Fig. 2.

Each flat rectangle in the figure represents one layer of the DNN architecture.
It contains information about the keras library [1] layer class that we used on

316 A. Andova et al.

Fig. 1. An example sample of size 32× 32 for the DNN.

the left side, and the shape of its input/output on the right side. For example,
the first layer in the DNN is an InputLayer, and it takes as input images of size
32 × 32 with 3 channels.

The top part of the figure presents the encoder, which consists of three pairs
of convolutional and max-pooling layers. The bottom part is divided into the
decoder (on the left) and the FNN (on the right). The decoder is symmetrical
to the encoder, whereas the FNN contains Dense and Dropout layers. The last
layer in the FNN has an output of 5 neurons, each one assigned to one of the
prediction classes presented in Sect. 3.1.

The idea behind this architecture is that, by providing the autoencoder with
the same image as input and output, we force it to encode the input image so that
the least amount of information is lost in the training process. The encoded part
can be seen as landscape features that the autoencoder automatically extracts
from the input data.

To cause the DNN to encode the properties that are useful for predicting
algorithm performance, we use the encoded part as input to an FNN. Both parts
of the DNN are trained simultaneously, with a combined loss function (mean
absolute error for the decoder, and categorical cross-entropy for the FNN).

Data Preprocessing. The objectives and overall constraint violation have dif-
ferent value ranges across different problems. For this reason, as a preprocessing
step, we normalize each of these functions. The min-max normalization proce-
dure applies the normalization over all samples of a given problem, using the
minimum and maximum value of the given objective. Furthermore, we normal-
ize the constraints by assigning a 0 value to the feasible solutions, and a 1 value

Algorithm Performance in Constrained Multiobjective Optimization 317

InputLayer

Output

MaxP Output

C Output

Output

C Output

MaxP Output

C

Output

C Output

Output

C Output

Output

C Output

Flatten Output

Dropout Output

Dense

Dropout Output

Dense Output

Dense Output

Encoder

Decoder FNN

Fig. 2. The applied DNN architecture consisting of the encoder, decoder and FNN.

Fig. 3. Four example CMOP inputs, as images, for use with the DNN. Red represents
the value of the first objective function, green the value of the second objective func-
tion, and blue the constraint violation. Prior to this encoding, the objective values are
normalized using the minimum and maximum objective values of the problem samples.
(Color figure online)

318 A. Andova et al.

to the infeasible solutions. Example visualizations of several input images from
different CMOPs are presented in Fig. 3.

Note that there are many ways to normalize the functions. For example, one
other possibility to normalize the overall constraint violation is to use its the min-
imum and maximum values. However, after some preliminary experimentation
with different normalization techniques, we found that the obtained algorithm
performance prediction results were comparable. Thus, in this paper, we only
present the results derived from the normalization techniques described in the
paragraph above.

In constrained multiobjective optimization, the order of the objectives should
not be important. Thus, we generate two images for each input sample – one
where the first objective is assigned the red color and the second objective green,
and another image where the ordering is reversed. The blue color always encodes
the constraint violation.

DNN Settings. We used the ReLu activation function for each hidden layer
in the DNN. We set the batch size to 1 000, the number of epochs to 100, and
we used the Adam optimizer [13] with a learning rate of 0.0001.

4 Experimental Setup

Our work is focused on bi-objective CMOPs with 2D search spaces. We used six
benchmark suites in the experiments: MW [17], C-DTLZ [12], CTP [7], DAS-
CMOP [9], and DC-DTLZ [14], as well as three individual benchmark problems:
BNH [4], TNK [27], and SRN [25]. The total number of CMOPs with two vari-
ables and two objectives from these suites is 36 (see Table 1 for a break-down
over problem suites).

Table 1. The number of bi-objective 2D CMOPs per suite used in this study.

MW C-DTLZ CTP DAS-CMOP DC-DTLZ BNH TNK SRN
8 5 8 6 6 1 1 1

For the purpose of predicting algorithm performance, three multiobjective
optimization algorithms were tested, each with a different constraint handling
technique. These algorithms were NSGA-III [12], MOEA/D-IEpsilon [8], and C-
TAEA [14]. To handle the variation of the results due to the stochastic nature
of the algorithms, 31 runs of each algorithm were conducted on each problem.
With this approach, algorithm performance can be estimated more accurately.
To extract the target classes, we used the mean of the ECDF values over all 31
algorithm runs. Additionally, we applied the same population size and number
of generations to all algorithms, allowing for a fair comparison of results. The
population size was set to 200, and the number of generations to 120. To generate

Algorithm Performance in Constrained Multiobjective Optimization 319

reference vectors for NSGA-III and MOEA/D-IEpsilon, we used the Das-Denis
approach [6]. The number of reference vectors was 200 for each algorithm.

The ELA features were calculated stochastically, whereby a different sam-
ple of solutions was selected each time the feature calculation is begun. This
was dealt with by creating 100 samples using Latin hypercube sampling, which
resulted in 100 sets of features (i.e., learning instances) for each problem. Simi-
larly, we created 100 samples per problem for the DNN method using the sam-
pling described in Sect. 3.3.

For easier reproducibility of the stochastic learning models, we report that
the random number generator was seeded with the value of ten to obtain the
results in the following section. Moreover, experiments with alternative seeds
resulted in comparable results.

To evaluate the performance of each classifier, we used the leave-one-problem-
out evaluation methodology. In this approach, no information about the target
problem is available in the training data. Thus, all instances of a problem are
used as test data, and the instances from the rest of the problems as training
data. This process is repeated for each problem and the average mean absolute
error is used as an evaluation metric.

5 Results

The classification accuracy for the desired target percentages for all learning
methods is presented in Table 2. From the results we can see that none of the
learning models drastically outperforms the dummy classifier. The only exception
is the Random forest model. This performs better than the dummy classifier in
most cases, except for MOEA/D and C-TAEA when predicting the evaluation
class with at least 90% of the targets achieved.

To analyze more thoroughly the predictions by the Random forest model,
we provide its confusion matrices for all three classification tasks in Fig. 4. In
addition, Fig. 5 shows problem samples in the ELA feature space, reduced to 2D
using the t-distributed stochastic neighbor embedding (t-SNE) method [18].

In Table 2, we can see that the classification accuracy is the same across all
optimization algorithms when tackling the first classification task, that being
to achieve 50% of the targets, i.e., to reach the border between the infeasible
and feasible regions. An explanation for this can be derived from the confusion
matrices in Fig. 4. These show that most of the optimization algorithms find a
feasible solution in the initial population. They are, therefore, labeled with class
0. Otherwise, they achieve a feasible solution in at most 2 000 evaluations.

As shown in Fig. 5, with t-SNE dimension reduction, the instances from the
same CMOP form clusters. This means the ELA features from the same problem
do not provide the diversity required by the machine learning models. Conse-
quently, during prediction, the learning models usually have either a 100% or
0% accuracy for a given CMOP. This is manifested in the nearly fully rounded
results present in the confusion matrices in Fig. 4. A similar behavior can be
observed for the DNN method, although this method does not rely on ELA
features.

320 A. Andova et al.

Table 2. Classification accuracy of the learning models predicting the algorithm per-
formance classes.

Targets Classifier NSGA-III MOEA/D C-TAEA
50% Dummy 0.916 0.916 0.916

Decision tree 0.916 0.916 0.916
Random Forest 0.944 0.944 0.944
SVC 0.888 0.888 0.888
DNN 0.916 0.916 0.916

70% Dummy 0.416 0.416 0.583
Decision tree 0.446 0.376 0.658
Random Forest 0.576 0.549 0.674
SVC 0.406 0.406 0.588
DNN 0.381 0.304 0.583

90% Dummy 0.638 0.666 0.722
Decision tree 0.581 0.668 0.687
Random Forest 0.677 0.638 0.703
SVC 0.623 0.650 0.727
DNN 0.638 0.666 0.722

The DNN, proposed as a novelty in this work, unfortunately never outper-
forms the dummy classifier and sometimes performs even worse than it, although
the loss was observed to decrease during training. Worse performance is, for
example, seen when predicting the number of evaluations needed by the NSGA-
III and MOEA/D algorithms to achieve 70% of the targets. A reason for the poor
DNN performance could be that we used only 35 CMOPs for training. Although
we generated 100 samples for each problem, this may still not provide enough
diversity and the DNN is not able to learn the patterns of the search space.
Namely, it is known that DNN’s need huge amounts of data to learn adequately.
The classical machine learning models, on the other hand, are designed to be
able to handle small amounts of data, but, as stated before, their performance
was not found to be promising either.

A reason for poor performance of the classical machine learning models on
CMOPs could be that, just like the DNN, they also need more data (although
probably less so than the DNN). The small number of CMOPs used for training
is certainly a difficulty, but the similarity of some properties across different
CMOPs is also a potential reason for the low prediction performance and (likely)

Algorithm Performance in Constrained Multiobjective Optimization 321

Fig. 4. Confusion matrices of the random forest models for the three desired target per-
centages. Each confusion matrix refers to the algorithm performance classes explained
in Sect. 3.1 in more detail.

overfitting of the data. For example, as shown in Fig. 3, DC1-DTLZ1 and DC1-
DTLZ3 have very similar landscapes, and, given that the order of objectives in
CMOPs is insignificant, the red and the green sectors may be swapped.

Another reason for the poor performance of feature-based performance pre-
diction might be the recency of research into ELA features for CMOPs. Possibly
not all informative characteristics of CMOPs are included in the feature set, as
of yet.

322 A. Andova et al.

Fig. 5. Visualizations of ELA features for the three desired target percentages, reduced
in dimensionality using the t-SNE method. The colors in the first row of the plots repre-
sent the problems included in the experiment. In the remaining rows, the colors identify
the classes representing the number of evaluations needed to achieve a percentage of
targets. (Color figure online)

6 Conclusion

In this work, we tried to improve upon our previous attempt at algorithm perfor-
mance prediction for three widely used multiobjective optimization algorithms,
NSGA-III, MOEA/D-IEpsilon, and C-TAEA, on 2D, 3D, and 5D CMOPs. Pre-
viously, we worked on predicting the area under the curve of the ECDF for the
ICMOP quality indicator proposed in [29]. We used classical machine learning
regression models, whose inputs were the ELA features proposed in [2]. Unfortu-
nately, the obtained results were not encouraging. Consequently, in this work, we
focused on 2D CMOPs. We used a total of nine benchmark suites and problems,

Algorithm Performance in Constrained Multiobjective Optimization 323

which resulted in 36 CMOPs. This is significantly larger than in the previous
work where only 13 were used. Furthermore, we changed the prediction task – in
this work, we were predicting the number of evaluations needed to achieve 50%,
70%, and 90% of the ECDF targets. Moreover, because predicting the number
of evaluations is a hard task, we discretized the number of evaluations needed
into five classes.

The results from the previous work left questions as to whether the prediction
performance was poor because of the small number of CMOPs used for training,
or the underdevelopment of the CMOP ELA feature set. To eliminate the second
issue, we proposed an end-to-end DNN, that does not include ELA features to
predict algorithm performance. As far as we are aware, this is the first time an
end-to-end DNN has been used to predict algorithm performance on CMOPs.

Unfortunately, the newly proposed method did not outperform the dummy
prediction model. Nonetheless, the reason for this might be that using merely 36
CMOPs is not enough for training a DNN. Thus, this left us with the dilemma of
poor algorithm performance prediction – are more CMOPs required to predict
algorithm performance, or better ELA features? Moreover, the tested evolution-
ary algorithms performed comparably on the benchmark problems. This calls
for involving a larger set of algorithms that would potentially show different
performance.

In the future, we plan to extend our research on end-to-end DNNs for algo-
rithm performance prediction by applying publicly available pretrained DNNs.
The idea is to enhance the performance of the proposed architecture. This is a
standard practice in deep learning when dealing with small datasets and thus,
although none of the pretrained models was trained on problem landscapes, their
learned patterns might still help with our prediction task.

Another way forward is to utilize a larger CMOP benchmark suite. This
can be constructed by combining the objectives and constraints of constrained
single-objective problems from various benchmark suites. This way, we could
include a much larger number of CMOPs in the data, possibly helping both
the classical machine learning methods and the deep learning methods better
predict algorithm performance. A drawback to this approach is that running the
algorithms 31 times for each problem combination would be a time-consuming
task. It is possible, however, that already a small proportion of the problem
combinations would contribute diversity to the extended benchmark suite.

Ideally, in future work, both the ideas stated above would be combined.
Tests on an extended CMOP benchmark suite are sure to answer whether more
CMOPs are needed to better predict algorithm performance, while the inclu-
sion of knowledge from pretrained DNNs is likely to provide insights into the
possibility of improving the current ELA features for CMOPs.

Acknowledgements. The authors acknowledge the financial support from the Slove-
nian Research and Innovation Agency (young researcher program, research core fund-
ing No. P2-0209, and project No. N2-0254 “Constrained Multiobjective Optimiza-
tion Based on Problem Landscape Analysis”). The publication is also based upon
work from COST Action CA22137 “Randomised Optimisation Algorithms Research

324 A. Andova et al.

Network” (ROAR-NET), supported by European Cooperation in Science and Technol-
ogy (COST).

References

1. Keras. https://github.com/fchollet/keras (Accessed 27 September 2023)
2. Alsouly, H., Kirley, M., Muñoz, M.A.: An instance space analysis of constrained

multi-objective optimization problems. IEEE Trans. Evol. Comput. 27(5), 1427–
1439 (2023). https://doi.org/10.1109/TEVC.2022.3208595

3. Andova, A., Vodopija, A., Cork, J., Tušar, T., Filipič, B.: An attempt at predicting
algorithm performance on constrained multiobjective optimization problems. In:
Slovenian Conference on Artificial Intelligence: Proceedings of the 26th Interna-
tional Multiconference Information Society, IS 2023 (2023)

4. Binh, T.T., Korn, U.: Mobes: a multiobjective evolution strategy for constrained
optimization problems. In: Proceedings of the 3rd International Mendel Conference
on Genetic Algorithms, MENDEL 1997, pp. 176–182 (1997)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.
1023/A:1010933404324

6. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the Pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optim. 8(3), 631–657 (1998). https://doi.org/10.1137/S1052623496307510

7. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective
evolutionary optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A.,
Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44719-9_20

8. Fan, Z., et al.: An improved epsilon constraint-handling method in MOEA/D
for CMOPs with large infeasible regions. Soft. Comput. 23, 12491–12510 (2019).
https://doi.org/10.1007/s00500-019-03794-x

9. Fan, Z., et al.: Difficulty adjustable and scalable constrained multiobjective test
problem toolkit. Evol. Comput. 28(3), 339–378 (2020). https://doi.org/10.1162/
evco_a_00259

10. Hansen, N., Auger, A., Brockho%, D., Tušar, T.: Anytime performance assessment
in blackbox optimization benchmarking. IEEE Trans. Evol. Comput. 26(6), 1293–
1305 (2022). https://doi.org/10.1109/TEVC.2022.3210897

11. Hanster, C., Kerschke, P.: flaccogui: exploratory landscape analysis for every-
one. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO 2017, pp. 1215–1222. ACM (2017). https://doi.org/10.1145/
3067695.3082477

12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, Part II: Handling con-
straints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4),
602–622 (2013). https://doi.org/10.1109/TEVC.2013.2281534

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
doi.org/10.48550/arXiv.1412.6980 arXiv preprint arXiv:1412.6980

14. Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for con-
strained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315
(2018). https://doi.org/10.1109/TEVC.2018.2855411

15. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-
aware performance prediction for evolutionary multiobjective optimization. IEEE

https://github.com/fchollet/keras
https://doi.org/10.1109/TEVC.2022.3208595
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1007/3-540-44719-9_20
https://doi.org/10.1007/s00500-019-03794-x
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1109/TEVC.2022.3210897
https://doi.org/10.1145/3067695.3082477
https://doi.org/10.1145/3067695.3082477
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TEVC.2018.2855411

Algorithm Performance in Constrained Multiobjective Optimization 325

Trans. Evol. Comput. 24(6), 1063–1077 (2019). https://doi.org/10.1109/TEVC.
2019.2940828

16. Loh, W.Y.: Classification and regression trees. Wiley Interdisciplinary Rev. Data
Mining Knowl. Dis. 1(1), 14–23 (2011). https://doi.org/10.1002/widm.8

17. Ma, Z., Wang, Y.: Evolutionary constrained multiobjective optimization: test suite
construction and performance comparisons. IEEE Trans. Evol. Comput. 23(6),
972–986 (2019). https://doi.org/10.1109/TEVC.2019.2896967

18. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11), 2579–2605 (2008). https://jmlr.org/papers/v9/vandermaaten08a.html

19. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2011, pp. 829–836. ACM (2011). https://doi.
org/10.1145/2001576.2001690

20. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)
21. Nikolikj, A., Doerr, C., Eftimov, T.: Rf+clust for leave-one-problem-out perfor-

mance prediction. In: Applications of Evolutionary Computation: 26th Interna-
tional Conference, pp. 285–301. Springer (2023). https://doi.org/10.1007/978-3-
031-30229-9_19

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011). https://www.jmlr.org/papers/v12/pedregosa11a.html

23. Platt, J.C.: Probabilities for SV machines. In: Smola, A.J., Bartlett, P.L.,
Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp.
61–73. MIT Press (2000)

24. Prager, R.P., Seiler, M.V., Trautmann, H., Kerschke, P.: Automated algorithm
selection in single-objective continuous optimization: a comparative study of deep
learning and landscape analysis methods. In: International Conference on Parallel
Problem Solving from Nature, PPSN 2022. pp. 3–17. Springer (2022). https://doi.
org/10.1007/978-3-031-14714-2_1

25. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Comput. 2(3), 221–248 (1994). https://doi.org/
10.1162/evco.1994.2.3.221

26. van Stein, B., Long, F.X., Frenzel, M., Krause, P., Gitterle, M., Bäck, T.: Doe2vec:
Deep-learning based features for exploratory landscape analysis. arXiv preprint
arXiv:2304.01219 (2023). https://doi.org/10.48550/arXiv.2304.01219

27. Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support
system for multicriteria optimization. In: 1995 IEEE International Conference on
Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 2,
pp. 1556–1561 (1995). https://doi.org/10.1109/ICSMC.1995.537993

28. Vermetten, D., Wang, H., Bäck, T., Doerr, C.: Towards dynamic algorithm selec-
tion for numerical black-box optimization: Investigating bbob as a use case. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2020. pp. 654–662. ACM (2020). https://doi.org/10.1145/3377930.3390189

29. Vodopija, A., Tušar, T., Filipič, B.: Characterization of constrained continuous
multiobjective optimization problems: A performance space perspective. arXiv
preprint arXiv:2302.02170 (2023). https://doi.org/10.48550/arXiv.2302.02170

30. Vodopija, A., Tušar, T., Filipič, B.: Characterization of constrained continuous
multiobjective optimization problems: a feature space perspective. Inf. Sci. 607,
244–262 (2022). https://doi.org/10.1016/j.ins.2022.05.106

https://doi.org/10.1109/TEVC.2019.2940828
https://doi.org/10.1109/TEVC.2019.2940828
https://doi.org/10.1002/widm.8
https://doi.org/10.1109/TEVC.2019.2896967
https://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1007/978-3-031-30229-9_19
https://doi.org/10.1007/978-3-031-30229-9_19
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/978-3-031-14714-2_1
https://doi.org/10.1007/978-3-031-14714-2_1
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1162/evco.1994.2.3.221
http://arxiv.org/abs/2304.01219
https://doi.org/10.48550/arXiv.2304.01219
https://doi.org/10.1109/ICSMC.1995.537993
https://doi.org/10.1145/3377930.3390189
http://arxiv.org/abs/2302.02170
https://doi.org/10.48550/arXiv.2302.02170
https://doi.org/10.1016/j.ins.2022.05.106

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Evolutionary Machine Learning
	Hindsight Experience Replay with Evolutionary Decision Trees for Curriculum Goal Generation
	1 Introduction
	2 Background
	3 Proposed Method
	3.1 Optimizing DTs
	3.2 Generating Curriculum Goals

	4 Experimental Results
	4.1 Ablation Studies

	5 Conclusion
	References

	Cultivating Diversity: A Comparison of Diversity Objectives in Neuroevolution
	1 Introduction
	2 Related Work
	2.1 Diversity-Driven Neuroevolution
	2.2 Diversity Objectives in Neuroevolution
	2.3 Problem Characteristics of Interest

	3 Targeted Problems
	3.1 The Retina Problem
	3.2 The Tartarus Problem
	3.3 Deceptive Maze Navigation Problem
	3.4 Robot Locomotion Problem
	3.5 Characterizing the Targeted Problems

	4 Comparison of Diversity Objectives
	4.1 Neuroevolution Setup
	4.2 Introducing Representational Diversity for Neuroevolution
	4.3 Treatments, Parameter Settings, and Statistical Testing

	5 Results
	5.1 Summary of Experiments

	6 Conclusion
	References

	Evolving Reservoirs for Meta Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning as a Model of Development
	2.2 Meta Reinforcement Learning as a Model of the Interplay Between Evolution and Development
	2.3 Reservoir Computing as a Model of Neural Structure Generation
	2.4 Evolutionary Algorithms as a Model of Evolution

	3 Evolving Reservoirs for Meta Reinforcement Learning (ER-MRL)
	4 Results
	4.1 Evolved Reservoirs Improve Learning in Highly Partially Observable Environments
	4.2 Evolved Reservoirs Could Generate Oscillatory Dynamics that Facilitate the Learning of Locomotion Tasks
	4.3 Evolved Reservoirs Improve Generalization on New Tasks Unseen During Evolution Phase

	5 Discussion
	6 Appendix
	6.1 Methods
	6.2 Experiment Parameters
	6.3 Partially Observable Environments
	6.4 MuJoCo Forward Locomotion Environments
	6.5 MuJoCo Humanoid Environments
	6.6 Normalized Scores for Generalization
	6.7 Reservoir Hyperparameters Analysis

	7 Additional experiments
	References

	Hybrid Surrogate Assisted Evolutionary Multiobjective Reinforcement Learning for Continuous Robot Control
	1 Introduction
	2 Background
	2.1 Multiobjective Markov Decision Process
	2.2 Prediction Guided MORL
	2.3 Surrogate Assisted Multiobjective Evolutionary Optimization
	2.4 Probabilistic Selection in Decomposition-Based Multiobjective Evolutionary Algorithms

	3 Hybrid Surrogate Assisted Evolutionary Multiobjective Policy Gradient
	3.1 Dataset for Surrogates
	3.2 Surrogate Models
	3.3 Optimization Method

	4 Results
	4.1 Benchmark Experiments
	4.2 MORL for Autonomous Driving

	5 Conclusions
	References

	Towards Physical Plausibility in Neuroevolution Systems
	1 Introduction
	2 Background
	2.1 Artificial Neural Networks
	2.2 Neuroevolution

	3 Approach
	3.1 Power Measurement
	3.2 Model Partitioning
	3.3 Fitness Functions
	3.4 Module Reutilization

	4 Experimental Setup
	5 Results
	6 Conclusion
	6.1 Future Work

	References

	Leveraging More of Biology in Evolutionary Reinforcement Learning
	1 Introduction
	2 Evolutionary Reinforcement Learning
	2.1 Application Areas of Particular Importance

	3 Concepts, Principles, and Mechanisms
	3.1 Evolvability and Robustness
	3.2 Epistasis and Recombination
	3.3 Developmental Canalization
	3.4 Epigenetics
	3.5 Neutrality
	3.6 Niche Construction
	3.7 Hierarchy/Modularity
	3.8 Phylogenetic Analysis
	3.9 Plasticity
	3.10 Homeogenesis
	3.11 Resource Constraints
	3.12 Other Mechanisms, Principles, and Concepts

	4 Discussion
	5 Conclusion
	References

	A Hierarchical Dissimilarity Metric for Automated Machine Learning Pipelines, and Visualizing Search Behaviour
	1 Introduction
	2 Background
	2.1 TPOT Pipeline Representation
	2.2 Producing New Pipelines
	2.3 The Tree Edit Distance Algorithm

	3 A Metric for Pipeline Dissimilarity
	3.1 Pipeline Structures
	3.2 Quantifying Pipeline Dissimilarity

	4 Visual Representations of TPOT Search
	4.1 Experimental Design
	4.2 Results and Discussion

	5 Conclusion
	References

	DeepEMO: A Multi-indicator Convolutional Neural Network-Based Evolutionary Multi-objective Algorithm
	1 Introduction
	2 Background
	2.1 Multi-objective Optimization Problem (MOP)
	2.2 Quality Indicator (QI)
	2.3 Indicator-Based EMOA (IB-EMOA)
	2.4 Dynamic Graph Convolutional Neural Network (DGCNN)

	3 Proposed Approach
	3.1 General Framework
	3.2 Using DGCNN in DeepEMO

	4 Experimental Results
	4.1 Test Problems
	4.2 Performance Assessment
	4.3 Discussion

	5 Conclusions
	References

	A Comparative Analysis of Evolutionary Adversarial One-Pixel Attacks
	1 Introduction
	2 Related Work
	3 One-Pixel Attack
	3.1 Evolutionary One-Pixel Attack

	4 Experimental Setup
	5 Experimental Results
	6 Conclusion
	References

	Robust Neural Architecture Search Using Differential Evolution for Medical Images
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Search Space Design
	3.2 Encoding Scheme
	3.3 Fitness Function
	3.4 Adversarial Training
	3.5 Differential Evolution

	4 Experimental Settings and Results
	4.1 Datasets Used for Experimentation
	4.2 Experimental Settings
	4.3 Experimental Results and Discussion

	5 Conclusion
	References

	Progressive Self-supervised Multi-objective NAS for Image Classification
	1 Introduction
	2 Related Work
	3 Multi-objective Neural Architecture Search
	3.1 CGP-NASV2 Solution Representation
	3.2 Self-supervised Approach for Multi-objective NAS

	4 Experimental Framework
	5 Experimental Results
	5.1 Comparison with the State-of-the-Art
	5.2 Visual Analysis of the Evolved Architectures

	6 Conclusions
	References

	Genetic Programming with Aggregate Channel Features for Flower Localization Using Limited Training Data
	1 Introduction
	1.1 Goals

	2 Backgrounds and Related Work
	2.1 Existing Methods for Flower Localization
	2.2 Aggregate Channel Features (ACF) for Object Localization

	3 Proposed Approach
	3.1 The New GP Representation
	3.2 Terminal Set
	3.3 Function Set
	3.4 Fitness Function
	3.5 Test Process

	4 Experiment Design
	4.1 Datasets
	4.2 Comparison Methods
	4.3 Parameter Settings

	5 Results and Discussions
	5.1 Average IoU Results
	5.2 Detection Accuracy Results

	6 Further Analysis
	6.1 Analysis of an Example GP Tree
	6.2 Visual Comparison Between ACFGP, Baseline, and YOLOv8

	7 Conclusions
	References

	Evolutionary Multi-objective Optimization of Large Language Model Prompts for Balancing Sentiments
	1 Introduction
	2 Related Work
	3 EMO-Prompts
	3.1 Large Language Model
	3.2 Evolutionary Approach
	3.3 NSGA-II and S-Metric Selection

	4 Experiments
	4.1 Sentiment Analysis
	4.2 Settings
	4.3 Results

	5 Conclusion
	References

	Evolutionary Feature-Binning with Adaptive Burden Thresholding for Biomedical Risk Stratification
	1 Introduction
	2 Methods
	2.1 Scikit-FIBERS
	2.2 Algorithmic Expansions for Adaptive Burden Thresholding
	2.3 Synthetic Data Simulation
	2.4 Simulation Experiments

	3 Results and Discussion
	4 Conclusion
	References

	An Evolutionary Deep Learning Approach for Efficient Quantum Algorithms Transpilation
	1 Introduction
	2 Preliminary Concepts
	3 Deep Learning and Neural Architecture Search
	3.1 Deep Learning for Qubits' Initialisation

	4 The Proposed Approach
	4.1 The Extract-Tranform-Load Module
	4.2 The Evolutionary Deep Neural Network Module

	5 Experimental Study
	5.1 Experiments' Design and Benchmarks
	5.2 Results and Discussion

	6 Conclusion and Perspective
	References

	Measuring Similarities in Model Structure of Metaheuristic Rule Set Learners
	1 Introduction
	2 Metaheuristic Rule Set Learners
	3 Generating Benchmark Tasks
	4 Measuring Dissimilarity of Sets of Rules
	4.1 Desired Properties
	4.2 Dissimilarity Measure

	5 Demonstration
	5.1 Data-Generating Processes
	5.2 Evaluation of Repeated Runs

	6 Related Work
	7 Future Work
	8 Conclusion
	References

	Machine Learning and AI in Digital Healthcare and Personalized Medicine
	Incremental Growth on Compositional Pattern Producing Networks Based Optimization of Biohybrid Actuators
	1 Introduction
	2 Background
	3 Methods
	4 Results
	5 Discussion
	References

	Problem Landscape Analysis for Efficient Optimization
	Hilbert Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling
	1 Introduction
	2 Hilbert Curves
	3 Hilbert Curves as Samplers
	3.1 Stochastic Sampling Using Hilbert Curves
	3.2 Search Space Coverage
	3.3 Computational Cost
	3.4 Predictive Performance of Hilbert Curve Samples

	4 Hilbert Curves as an Ordering Tool
	4.1 Step Size Consistency
	4.2 Computational Cost
	4.3 Evaluation of Features Generated Using Hilbert Curve Ordering

	5 Conclusion
	References

	Predicting Algorithm Performance in Constrained Multiobjective Optimization: A Tough Nut to Crack
	1 Introduction
	2 Background
	2.1 Constrained Multiobjective Optimization
	2.2 Exploratory Landscape Analysis for Constrained Multiobjective Optimization
	2.3 Empirical Cumulative Distribution Functions
	2.4 Deep Neural Networks

	3 Methodology
	3.1 Classification Tasks
	3.2 Classical Machine Learning
	3.3 DNN

	4 Experimental Setup
	5 Results
	6 Conclusion
	References

	On the Latent Structure of the bbob-biobj Test Suite
	1 Introduction
	2 Landscape Analysis
	2.1 Landscape Features

	3 Methodology
	3.1 Expert Classification
	3.2 Cluster Analysis
	3.3 Experiment Design

	4 Results
	4.1 Number of Clusters
	4.2 Analysis of Latent Clusters
	4.3 Interpretation of Discovered Classes

	5 Conclusions
	References

	Soft Computing Applied to Games
	Strategies for Evolving Diverse and Effective Behaviours in Pursuit Domains
	1 Introduction
	1.1 Diversity Search
	1.2 Contributions
	1.3 Organization of Paper

	2 System Design
	2.1 Simulation Environment
	2.2 Agent Controllers
	2.3 Genetic Programming
	2.4 Computing Diversity
	2.5 Behaviour Vectors
	2.6 Score the Population Using Sum of Ranks

	3 Experiments
	3.1 Setting a Baseline
	3.2 Testing the Diversity Strategies
	3.3 Discussion

	4 Conclusion
	References

	Using Evolution and Deep Learning to Generate Diverse Intelligent Agents
	1 Introduction
	2 System Design
	2.1 Pursuit Domain Simulation
	2.2 GP Architecture
	2.3 CNN Architecture
	2.4 Combined GP/CNN System

	3 CNN for Emergent Behaviour Classification
	3.1 CNN Training

	4 Diverse Agent Generation
	5 Targeted Behaviour Generation
	6 Conclusion
	References

	Vision Transformers for Computer Go
	1 Introduction
	2 Computer Go
	3 Network Architectures
	3.1 Residual Network
	3.2 Transformer
	3.3 Efficient Former
	3.4 Adaptation for the Game of Go

	4 Experimental Results
	4.1 Dataset
	4.2 Experimental Information
	4.3 Training and Playing

	5 Conclusion
	References

	Surrogate-Assisted Evolutionary Optimisation
	Integrating Bayesian and Evolutionary Approaches for Multi-objective Optimisation
	1 Introduction
	2 Background
	2.1 Multi-objective Bayesian Optimisation
	2.2 Decomposition-Based MOEAs
	2.3 Scalarising Functions

	3 Multi-objective BO with MOEAs Selection Criterion
	3.1 Estimation of Acquisition Function
	3.2 Demonstration

	4 Results and Discussion
	5 Conclusions
	References

	Author Index

