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ABSTRACT
A research problem studied extensively in recent years is the predic-
tion of optimization algorithm performance. A common approach
is using the landscape features of optimization problems to train
machine learning models. These models are then used to predict
algorithm performance. Due to the small number of constrained
multiobjective optimization problems (CMOPs) available for bench-
marking, training a machine learning model to predict algorithm
performance is a hard task. To address this issue, this study uses
the functions from the bbob and bbob-constrained benchmark
problems to generate new CMOPs. These are then used as addi-
tional training examples for the machine learning models. Given
the large number of generated CMOPs, the experiments in this
study are limited to those with two objectives and two variables.
The obtained results are promising. Using additional problems in
the training phase improves the predictions in half of the defined
classification tasks.

CCS CONCEPTS
• Theory of computation→ Bio-inspired optimization; Nonconvex
optimization; Numeric approximation algorithms; • Comput-
ing methodologies → Classification and regression trees.
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1 INTRODUCTION
Optimization algorithms behave differently on different problem
landscapes. Therefore, a lot of recent research in evolutionary com-
putation has been focused on developing methodologies that can
recommend the best algorithm for a given problem, based on the
analysis of its landscape. The task of selecting the best algorithm
for a given optimization problem is called algorithm selection. Most
of the research on this topic was done on single-objective optimiza-
tion problems [19, 27]. Typically, researchers approach algorithm
selection by extracting exploratory landscape analysis (ELA) fea-
tures from a population of solutions, which are then used as inputs
to machine learning models.

Although there are many single-objective benchmark problems,
a substantial effort has been recently put into developing additional
single-objective optimization problems as affine combinations of
pairs of the available benchmark problems [8]. One of the motiva-
tions behind this is to increase the number of problems researchers
can use to analyze and assess the performance of optimization
algorithms [30].

The set of constrained multiobjective problems (CMOP) available
for benchmarking is relatively limited compared to other contin-
uous optimization problems. Moreover, CMOPs are considerably
more complex and challenging to solve. For this reason, the algo-
rithm selection task for CMOPs is an ambitious goal, and thus, as
a first step towards solving it, researchers have instead proposed
methods for predicting algorithm performance [3].

An interesting approach to creating new benchmark problems
for multiobjective optimization has been proposed in [6], where
combinations of bbob problems have been used as separate objec-
tives to generate two suites of multiobjective benchmark problems,
bbob-biobj and bbob-biobj-ext. However, their large size (55
and 92 problems, respectively) is a significant limitation as evalu-
ating algorithms on each of these problems in six dimensions and
15 instances can take a long time. As a solution to this issue, [2]
attempted to use ELA features to select a subset of problems from
the bbob-biobj benchmark suite. However, they came to a number
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of limitations in their approach, most of them connected to the
differences between instances of the same problem combination.

This paper focuses on predicting algorithm performance on
CMOPs. To achieve this, we use state-of-the-art ELA features [1],
explicitly designed for CMOPs. These features serve as inputs to
traditional machine learning classification models. In our experi-
ments, we use a comprehensive set of baseline CMOPs to evaluate
the performance of our methodology. Furthermore, inspired by [6],
we create additional bi-objective CMOPs, which we include in the
training data. This way, we increase the number of CMOPs in
the training data and their diversity. Due to the large number of
additional CMOPs, on which we also have to run three selected
optimization algorithms, we restrict these initial experiments to 2D
CMOPs only.

The structure of this paper is as follows. In Section 2, we present
the background of this work and in Section 3, we describe the
proposed methodology. Then, Section 4 explains the experimental
setup, Section 5 presents the obtained results and Section 6 discusses
them. Finally, in Section 7, we give a conclusion to the experiments
and outline ideas for future research.

2 BACKGROUND
In this section, we firstly formulate what a CMOP is, and then
briefly explain the ELA features and the performance metric used
in the methodology. Finally, we give a short introduction of the
bbob and the bbob-constrained benchmarks used to create the
the additional CMOPs.

2.1 Constrained Multiobjective Optimization
A CMOP can be formulated as:

minimize 𝑓𝑚 (x), 𝑚 = 1, . . . , 𝑀
subject to 𝑔 𝑗 (x) ≤ 0, 𝑗 = 1, . . . , 𝐽 ,

ℎ𝑘 (x) = 0, 𝑘 = 1, . . . , 𝐾,
(1)

where x = (𝑥1, . . . , 𝑥𝐷 ) is a 𝐷 dimensional solution vector, 𝑓𝑚 (x)
are the objective functions, and 𝑔 𝑗 (x) and ℎ𝑘 (x) are the inequality
and equality constraint functions. 𝑀 is the number of objectives,
and 𝐽 and 𝐾 are the number of inequality and equality constraints.

A solution x is feasible, if it satisfies all constraints, i.e.,𝑔 𝑗 (x) ≤ 0,
for 𝑗 = 1, . . . , 𝐽 and ℎ𝑘 (x) = 0, for 𝑘 = 1, . . . , 𝐾 . A feasible solution
x dominates another feasible solution y if 𝑓𝑚 (x) ≤ 𝑓𝑚 (y) for all 1 ≤
𝑚 ≤ 𝑀 , and 𝑓𝑚 (x) < 𝑓𝑚 (y) for at least one 1 ≤ 𝑚 ≤ 𝑀 . A feasible
solution x∗ is a Pareto-optimal if there exists no feasible solution
x ∈ 𝑆 that dominates x∗. All nondominated feasible solutions form
the Pareto set 𝑆o, and the image of the Pareto set in the objective
space is the Pareto front, 𝑃o = {𝑓 (x) | x ∈ 𝑆o}.

The point in the objective space with the best objective values
is the ideal point 𝑧𝐼 = (minx∈𝑆o 𝑓1 (x), . . . ,minx∈𝑆o 𝑓𝑀 (x)). The
nadir point represents the point in the objective space with the
worst fitness values across all solutions in the Pareto front 𝑧𝑁 =

(maxx∈𝑆o 𝑓1 (x), . . . ,maxx∈𝑆o 𝑓𝑀 (x)).
Nondomination ranking is a method in multiobjective optimiza-

tion used for sorting a set of solutions into fronts, based on their
dominance. All nondominated solutions get a nondomination rank
of 1, solutions that are dominated only by the nondominated solu-
tions get a nondomination rank of 2, and so on.

2.2 Exploratory Landscape Analysis for
Constrained Multiobjective Optimization

ELA is a methodology used for extracting features from optimiza-
tion problems, based on a sample of evaluated solutions [24]. While
there are many ELA features for single-objective optimization prob-
lems [16], much fewer exist for multi-objective problems with and
without constraints [1, 21, 32]. The underdevelopment of the ELA
features for these problems presents an additional difficulty in solv-
ing the algorithm selection task for them.

In [1], the authors collected state-of-the-art ELA features specif-
ically designed for CMOPs. These features are calculated based on
an initial sample of solutions (sample features), as well on solutions
generated during a random walk (random walk features). Moreover,
they can be grouped into three distinct groups, each offering in-
sights into different aspects of CMOPs: themultiobjective landscape,
the violation landscape, and a hybrid, the multiobjective-violation
landscape.

The multiobjective landscape group contains ELA features de-
scribing the objectives and their internal relations. The sample fea-
tures in this group include the proportion of unconstrained Pareto
optimal solutions, the hypervolume of the unconstrained Pareto
front, and the correlation between objective values. The random
walk features comprise statistical measures concerning the distance
between random walk neighbors in the objective space.

The violation landscape group contains ELA features describ-
ing the problem’s constraints. The sample features in this group
comprise statistics related to global constraint violations, while
the random walk features comprise constraint violation statistics
between random walk neighbors.

The multiobjective violation landscape group contains features
describing the interactions between the objectives and the con-
straints. In this group, the sample features include the proportion
of feasible solutions, the proportion of Pareto optimal solutions,
hypervolume calculations, statistics on correlations between ob-
jectives and constraints, and others. The random walk features
comprise statistics that describe the dominance relations between
random walk neighbors.

2.3 Quality indicator for CMOPs
The hypervolume [13] is the most well-known quality indicator for
multiobjective optimization. However, one drawback to it is that
it assumes all solutions are feasible, which does not hold in con-
strained multiobjective optimization. For this reason, [31] proposed
a new quality indicator, 𝐼CMOP, designed specifically for CMOPs.
This indicator extends the concept of a hypervolume-based quality
indicator 𝐼MOP for unconstrained multiobjective optimization from
a previous work [14].
𝐼MOP is defined as follows:
(1) When the solutions in the set are dominated by the nadir

point, the 𝐼MOP quality indicator takes the value of the dis-
tance between the solutions and a region of interest bounded
by the ideal and the nadir point.

(2) When at least some of the solutions in the set dominate the
nadir point, the quality indicator equals the negative value of
the hypervolume, calculated with the reference point being
equal to the nadir point.
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Next, 𝐼CMOP is defined as follows:

(1) When all solutions in the set are infeasible, the 𝐼CMOP quality
indicator takes on the smallest constraint violation value of
all solutions in the set, with the addition of a threshold 𝜏∗.

(2) When the set contains at least one feasible solution, the
quality indicator is determined by the value of 𝐼MOP, upper
bounded by a threshold 𝜏∗, meaning it equals min{𝐼MOP, 𝜏

∗}.

𝐼CMOP, same as 𝐼MOP, assumes that lower indicator values signify
better sets of solutions and vice versa.

Two preconditions to be able to compare CMOPS using the
𝐼CMOP indicator are: (1) the objectives of each CMOP need to be
normalized using min-max normalization with the ideal and the
nadir point and (2) the constraint violations and the distances be-
tween the solutions and the region of interest need to be normalized
as well. The normalization in the second precondition can be done
using a sample of 100 evaluated solutions.

2.4 The bbob and bbob-constrained benchmark
suites

The bbob benchmark suite contains 24 noiseless functions, which
can be shifted and transformed into different instances [11]. The
functions have known optima and cover various difficulties found
in real-world problems.

The bbob-constrained benchmark suite contains nine func-
tions taken from the bbob benchmark suite. Six different types of
constraints of various difficulty are applied on each function, result-
ing in 9 · 6 = 54 function-constraint combinations. Finally, similarly
to the bbob benchmark, the function-constraint combinations are
shifted and transformed, resulting in different problem instances.

Both benchmarks can be found in the Comparing Continuous
Optimizers (COCO) platform [15].

3 METHODOLOGY
In this section, we present the classification tasks of the experiment
and the approach to the automatic creation of additional CMOPs.

3.1 Classification Tasks
To measure algorithm performance, one possibility is to track the
number of function evaluations needed to achieve a particular
value of a quality indicator (also called a target) [14]. An even
better understanding of the performance of a given algorithm can
be gained by creating a set of targets and analyzing the number of
function evaluations needed to achieve a proportion of them.

Following the setup proposed in [31], we use the 𝐼CMOP indicator
with target precision values of 𝜏𝜖 = 𝜏∗ + 𝜖 , where 𝜖 ∈ {10𝑝 |𝑝 ∈
{−5,−4.9, . . . , 0}} ∪ {1 + 10𝑝 |𝑝 ∈ {−5,−4.9, . . . , 0}} and 𝜏∗ is a
threshold value. This results in a total of 100 targets, where one
half of them are values for the 𝐼MOP indicator, while the other
half deals with cases when none of the solutions are feasible (the
first and the second case when describing the 𝐼CMOP indicator).
To evaluate algorithm performance, we will thoroughly analyze
when the algorithm achieved the following target proportions: 50%
(equating to finding at least one feasible solution), 60%, 70%, 80%,
and 90% of the targets.

Predicting the exact number of function evaluations needed to
achieve a certain proportion of targets is a regression task. Some-
times (when the algorithm does not achieve the given percentage of
targets during the observed evaluation), this number is unknown.
Therefore, to simplify the regression task, we categorize the predic-
tion values into distinct classes and transform the regression task
into a classification one.

The number of evaluations depends on the experimental setup.
In our scenario, we conduct a maximum of 24,000 evaluations using
algorithms with a population size of 200. Therefore, we define the
following classes:

• Class 1: The goal is met within 1 to 200 evaluations (during
the initial generation),

• Class 2: The goal is met within 201 to 2,000 evaluations.
• Class 3: The goal is met within 2,001 to 8,000 evaluations.
• Class 4: The goal is met within 8,001 to 24,000 evaluations.
• Class 5: The goal is never met.

3.2 Additional problem generation
Training a machine learning model requires large amounts of di-
verse data. However, when predicting the algorithm performance
in constrained multiobjective optimization, there are only tens of
CMOPs on which we can train the models. In addition to this, it was
found in [3] that all ELA features calculated on different samples
from one CMOP have similar values and do not add diversity to the
data. For this reason, we propose a method to automatically create
additional CMOPs, which can be used for training.

To create the additional CMOPs, we use the problems from the
bbob and bbob-constrained benchmark suites. We form a single
new instance of a constrained bi-objective problem by taking the
first instance of a bbob-constrained function as its first objective
and the second instance of a bbob function as its second objective.
The constraints of the new bi-objective problem instance are equal
to those of the bbob-constrained problem. We do so for all possi-
ble combinations of the problems from the two suits, resulting in a
total of 54 · 24 = 1, 296 additional CMOPs.

By using all problem combinations from the two suites of bench-
mark problems, we ensure the widest possible selection of problem
properties stemming from these suites. Figure 1 presents example
landscapes of eight hand-picked problems from the set of the addi-
tional CMOPs. In each plot, the problem landscape is approximated
with a grid of 300 × 300 points. The plot shows the dominance
rank ratio values of feasible solutions in yellow-green-blue shades
(lighter hues denote grid points that are dominated by fewer grid
point) [12] and the constraint violation values of infeasible solutions
in orange shades (lighter hues denote lower constraint violation
values). The eight chosen examples show the variety of problems
in the set of additional CMOPs. Note that most of the additional
CMOPs have a lower percentage of feasible solutions (see for exam-
ple problems (d) and (f)) when compared to the baseline CMOPs.

A crucial drawback to creating the additional CMOPs this way
is that we do not know their Pareto set and front. While we know
the location of one of the two single-objective optima (that of the
bbob-constrained function), the other optimum can be shifted
since the constraints from the bbob-constrained problem affect
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(a) (𝑓1, 𝑓1 ) (b) (𝑓1, 𝑓16 ) (c) (𝑓2, 𝑓20 ) (d) (𝑓3, 𝑓14 )

(e) (𝑓7, 𝑓13 ) (f) (𝑓4, 𝑓20 ) (g) (𝑓5, 𝑓14 ) (h) (𝑓8, 𝑓21 )

Figure 1: Problem landscapes of eight hand-picked additional CMOPs annotated by (𝑓𝑎, 𝑓𝑏 ), where 𝑓𝑎 , 𝑎 ∈ {1, . . . , 54} is the
bbob-constrained function and 𝑓𝑏 , 𝑏 ∈ {1, . . . , 24} the bbob function. The yellow-green-blue shades present the dominance rank
ratio, while the orange shades present the constraint violations.

also the bbob function. Therefore, it is hard to normalize these
problems.

To normalize the objectives, as explained in Section 3.1, we need
the ideal and the nadir point. These can be retrieved from the
true Pareto front or an approximation of it. Given that we do not
know the true Pareto front for the additional CMOPs, we compute
its approximation for each created additional CMOP by running
multiple times three optimization algorithms for a relatively large
number of evaluations (see Section 4 for more details). Then, the
Pareto front approximation is formed as the set of all nondomianted
solutions from all algorithm runs on a problem.

4 EXPERIMENTAL SETUP
In this section, we first present the used CMOPs, then the algorithms
and their parameter setting, and the specifics for calculating the
ELA features. Finally, we describe the machine learning models
used and explain the two performed experiments.

This research focuses on bi-objective CMOPs with 2D search
spaces. The experimental framework includes five well-known
benchmark suites:MW [23], C-DTLZ [18], CTP [7], DAS-CMOP [10],
and DC-DTLZ [20], as well as three separate CMOPs: BNH [4],
TNK [29], and SRN [28]. In total, 36 baseline CMOPs were selected
from these suites. In addition to these problems, a total of 1,296
additional CMOPs were created as explained in Section 3.2. A de-
tailed count of the number of CMOPs from each suite is presented
in Table 1.

Table 1: The number of bi-objective 2D CMOPs per suite used
in this study.

CMOP set Benchmark # of problems

MW 8
C-DTLZ 5
CTP 8

DAS-CMOP 6
DC-DTLZ 6

BNH 1
TNK 1

Baseline CMOPs

SRN 1

Additional CMOPs / 1,296

For evaluating algorithmic efficacy, three multiobjective opti-
mization algorithms were chosen, each incorporating a distinct
technique for handling constraints. These comprise NSGA-III [18],
MOEA/D-IEpsilon [9], and C-TAEA [20]. For a fair comparison of
the algorithms, the population size was set to 200, and the number
of generations to 120, for each algorithm. The rest of the parameters
are the same as in the original papers. We execute 31 separate runs
for each algorithm on every CMOP to ensure that the algorithm
performance can be accurately estimated. Thus, to estimate the
number of evaluations needed to achieve a given proportion of
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targets, we used the mean of the number of evaluations over all 31
algorithm runs.

Additionally, to calculate the Pareto front approximations needed
to normalize the additional problems, we separately run all three
algorithms 31 times, each time for 600 generations.

The ELA features consist of sample and random walk features.
Sample features are calculated on a sample of size 1,024, retrieved
using the Latin hypercube sampling method. The random walk
features are computed during a random walk of length 400. Using
the sample and the random walk solutions, a total of 77 features
were computed. To be able to compare the CMOPs using the ELA
features, we normalize the objectives using a min-max normaliza-
tion, where the ideal and the nadir point of a CMOP are taken as
the minimum and maximum values. In addition to this, for ELA
features that require hypervolume calculations, we set the refer-
ence point to (100, 100). Because of the stochastic nature of ELA
features, we repeated the feature calculation process 100 times for
each CMOP, resulting in 100 sets of features (i.e., learning instances)
per problem.

To predict the evaluation class, we used the ELA features as
input to three classical machine learning algorithms – Decision
Trees [22], Random Forest Classification [5], and C-Support Vector
Classification (SVC) [26], which are the usual choice when predict-
ing algorithm performance from ELA features. We also included
a dummy model that predicted the class in a stratified way based
on the distribution of the classes in the training data. In our ex-
periments, we used the scikit-learn implementations of these
methods with default parameter settings [25]. To evaluate the per-
formance of the classifiers, we used the leave-one-problem-out
evaluation methodology. This way, we ensured that no information
about the target CMOP is available in the training data. Thus, all
instances of a problem are used as test data, while the instances
from the rest of the problems are used as training data.

We conducted two experiments. In the first, we used only the
36 baseline CMOPs to train and test the classifier, resulting in
a total of 3500 training instances, and 100 testing instances. In
the second experiment, we added the additional CMOPs when
training the classifier, but used only the 36 baseline CMOPs when
evaluating it with the leave-one-problem-out evaluation. In total in
this experiment, we used 133,100 training instances, and 100 testing
instances. By testing only on the baseline CMOPs in the second
experiment, we were able to compare the results obtained from
the first experiment to the results from the second experiment and
decide whether including the additional CMOPs into the training
data improved the prediction performance.

5 RESULTS
The classification accuracy of the two experiments described in
Section 4 is presented in Tables 2 and 3. In both tables, we show
in bold the best model performance for each algorithm and each
target percentage. In addition, for an easier comparison of the
results from the two experimental setups, the highlighted cells in
Table 3 correspond to cases, in which the classification accuracy
improved when including the additional CMOPs into the training
data.

The results show that, when predicting the evaluation class for
achieving 50% of the targets, the best performing models achieve
100% accuracy. This accuracy was achieved for all algorithms on
the baseline CMOPs using Decision Tree and Random Forest, and
for most of the cases where all CMOPs were used. However, out-
performing a model with a 100% accuracy is hard, so in this case,
training models on all CMOPs shows that one is able to generalize
well and still achieve comparable results.

When predicting the evaluation class for achieving 60% of the
targets, the best-performing model in both experiments was the
Random Forest. For NSGA-III and C-TAEA, the best-performing
model was one trained using all CMOPs achieving 61.2% accuracy
in both cases, while the best-performing model for MOEA/D was
trained using only the baseline CMOPs, and achieved 62.1% accu-
racy. The difference in the accuracy between the best performing
model for MOEA/Dwhen using the baseline CMOPs and all CMOPs
is only 0.1%.

Similarly, when predicting the evaluation class for 70% of the
targets, the best-performing model for NSGA-III and MOEA/D was
one trained using all CMOPs, while the best-performing model for
C-TAEA was trained using only the baseline CMOPs. In this case,
the best-performing model was Random Forest, achieving 60.6%
and 56.3% accuracy for NSGA-III and MOEA/D, respectively, while
for C-TAEA it achieved 54.4% accuracy.

When predicting the evaluation class for 80% of the targets, the
best-performing models for NSGA-III andMOEA/Dwere trained on
baseline CMOPs, achieving 64.1% and 58.8% accuracy respectively,
while the best-performing model and C-TAEA was trained on the
all CMOPs and achieved 60.7% accuracy.

For 90% of the targets, the best-performing model for NSGA-III
and C-TAEA was trained on the baseline CMOPs and achieved
62.4% and 57.6% accuracy respectively, while the best-performing
model for MOEA/D was trained on all CMOPs and achieved 54.3%
accuracy.

Figure 2 presents the distributions of the evaluation classes for
each percentage of targets. The figure shows that the distributions
of the evaluation classes of the baseline CMOPs and the additional
CMOPs rarely match. Also, the range of covered evaluation classes
is wider for the additional CMOPs than for the baseline CMOPs.

To analyze the difference in the performance of the three selected
optimization algorithms on all CMOPs, compared to the baseline
CMOPs, we generate Venn diagrams in Figure 3 using the visualiza-
tion tool proposed in [17]. In this figure, we can see how often the
three selected algorithms performed similarly on the same set of
CMOPs (separately for baseline and additional CMOPs), and how
often one or two algorithms performed better than the rest. To
determine which algorithm performs best, we use the evaluation
classes presented in Section 2.3. Specifically, if one algorithm is
assigned a lower evaluation class compared to the other two for a
given evaluation target, we say it performs better than the other
two. If all three algorithms belong to the same evaluation class, we
say that there is no difference between the performance of the three
algorithms.

We can notice that, for the baseline CMOPs, all algorithms belong
to the same evaluation class when trying to achieve 50% of the
targets. However, for the additional CMOPs, there were 43 problems
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Table 2: Classification accuracy (of learningmodels predicting
the algorithm performance classes by using the leave-one-
problem-out methodology) in the first experiment. We use
only the baseline CMOPs for training and testing. Numbers in
bold denote the best model performance for each algorithm
and each target percentage.

Targets Classifier NSGA-III MOEA/D C-TAEA

50%

Dummy 0.838 0.838 0.838
Decision tree 1.000 1.000 1.000
Random Forest 1.000 1.000 1.000

SVC 0.916 0.916 0.916

60%

Dummy 0.257 0.252 0.253
Decision tree 0.425 0.471 0.488
Random Forest 0.594 0.621 0.566

SVC 0.444 0.444 0.396

70%

Dummy 0.249 0.261 0.253
Decision tree 0.363 0.506 0.455
Random Forest 0.553 0.535 0.544

SVC 0.166 0.416 0.508

80%

Dummy 0.320 0.258 0.290
Decision tree 0.604 0.574 0.508
Random Forest 0.641 0.588 0.582

SVC 0.591 0.536 0.590

90%

Dummy 0.291 0.367 0.413
Decision tree 0.478 0.386 0.456
Random Forest 0.624 0.495 0.576

SVC 0.476 0.503 0.558

Table 3: Classification accuracy (see also Table 2) in the second
experiment. We use all CMOPs for training and only the
baseline CMOPs for testing. Numbers in bold denote the best
model performance, while highlighted cells correspond to
cases, for which the classification accuracy improved when
including the additional CMOPs into the training data.

Targets Classifier NSGA-III MOEA/D C-TAEA

50%

Dummy 0.875 0.860 0.862
Decision tree 1.000 0.996 1.000
Random Forest 0.978 1.000 1.000

SVC 0.916 0.916 0.916

60%

Dummy 0.247 0.268 0.251
Decision tree 0.513 0.481 0.515
Random Forest 0.612 0.620 0.612

SVC 0.331 0.387 0.262

70%

Dummy 0.215 0.211 0.281
Decision tree 0.389 0.555 0.504
Random Forest 0.606 0.563 0.513

SVC 0.415 0.387 0.526

80%

Dummy 0.325 0.306 0.371
Decision tree 0.483 0.512 0.540
Random Forest 0.605 0.558 0.550

SVC 0.609 0.553 0.607

90%

Dummy 0.361 0.423 0.479
Decision tree 0.400 0.462 0.354
Random Forest 0.526 0.543 0.565

SVC 0.475 0.486 0.542

on which NSGA-III performed best and 14 problems on which
NSGA-III and MOEA/D performed better than C-TAEA.

The algorithm performances for 60% or 70% of the targets did
not differ much on the baseline CMOPs. However, a much wider
spectrum of performances could be noticed on the additional prob-
lems, where 188+55+42 = 285 of the CMOPs for 60% of the targets,
and 349 + 131 + 8 = 488 of the CMOPs for 70% of the targets were
best solved by one algorithm.

The assigned evaluation classes for achieving 80% and 90% of the
targets were not so diverse for the baseline CMOPs or the additional
CMOPs. A reason for this can be found in Figure 2, where almost
none of the algorithms achieved 80% and 90% of the targets (they
were mostly assigned to evaluation Class 5). However, in these
cases, there were still CMOPs in which one algorithm performed
best. More specifically, there are 2 + 3 = 5 baseline CMOPs for 80%
and 2 + 6 = 8 baseline CMOPs 90% of the targets for which one
algorithm performed best, and 116+18+7 = 141 and 30+11+7 = 48
additional CMOPs for 80% and 90% of the targets respectively, in
which one algorithm performed best.

6 DISCUSSION
The evaluation class distributions presented in Figure 2 show how
efficiently the algorithms achieve the given targets. We can see
that for most CMOPs, 50% of the targets are achieved in the first

generation, while 80% and 90% of the targets are rarely achieved.
For 80% and 90% of the targets, the proportion of the additional
CMOPs on which the algorithms never achieve the targets is higher
than the proportion of such baseline CMOPs. This shows that for
the optimization algorithms, converging close to the Pareto front
on the additional CMOPs is much harder than doing so on the
baseline CMOPs. In addition, there are some additional CMOPs, on
which the algorithms achieve 80% and 90% of the targets in the first
generation, while there are no such instances of baseline CMOPs.

These findings show how different in difficulty the baseline
CMOPs and the additional CMOPs are. Moreover, as the targets are
getting harder to be achieved, the differences between CMOPs also
increase. As a consequence, the differences between the baseline
CMOPs and the additional CMOPs are more present in the higher
target percentages. As a result of this, the classification accuracy
drops when using the additional CMOPs in the training data.

Analyzing the differences in algorithm performance presented
in Figure 3, we notice bigger differences among algorithms in the
additional CMOPs than in the baseline CMOPs. This applies count-
wise for all percentages of targets, as well as proportion-wise for
achieving 60% and 70% of the targets. The differences in algorithm
performance on the additional CMOPs show that the problem diver-
sity inside this problem set is greater than the baseline CMOP set.
Thus, exploring other ways to combine constrained single-objective
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(a) 50% of targets to be achieved (b) 60% of targets to be achieved (c) 70% of targets to be achieved

(d) 80% of targets to be achieved (e) 90% of targets to be achieved

Figure 2: Percentage of CMOPs belonging to a given evaluation class per algorithm. The three blue bars represent the proportion
of the 36 baseline CMOPs, while the three red bars represent the proportion of the 1296 additional CMOPs.

(a) 50% – baseline (b) 60% – baseline (c) 70% – baseline (d) 80% – baseline (e) 90% – baseline

(f) 50% – additional (g) 60% – additional (h) 70% – additional (i) 80% – additional (j) 90% – additional

Figure 3: Area-proportional Venn diagrams showing the number of CMOPs on which each algorithm performs best. In each
subplot, the pink, yellow, and blue circles represent the CMOPs for which the algorithms NSGA-III, MOEA/D, and C-TAEA,
respectively, are faster in reaching the given percentage of targets. The intersections of circles represent the CMOPs on which
multiple algorithms perform similarly (for example, see (g), the purple area represents the CMOPs on which both NSGA-III
and C-TAEA perform best).
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problems into CMOPs is a relevant approach forward to creating a
much needed CMOP benchmark.

In these experiments, we separately predicted algorithm per-
formance for the three algorithms. However, when dealing with a
real-world problem, it would be most useful to have a method that
suggests the most appropriate algorithm for that problem, based on
the ELA features. A method like this was previously not possible
due to the small number of available CMOPs, and the similar perfor-
mance of the algorithms on them. By using the additional CMOPs as
introduced in this work, we can get a larger set of CMOPs, on which
algorithms perform differently. Consequently, we might want to
redefine the algorithm performance prediction question into a more
natural one – which algorithm should we use when dealing with a
new CMOP (the algorithm selection task)?

7 CONCLUSION
In this work, we made predictions about the performance of three
well-known multiobjective optimization algorithms on benchmark
CMOPs. For this purpose, we used ELA features designed specifi-
cally for CMOPs as input to three classical machine learning algo-
rithms. For a fair evaluation, we used the leave-one-problem-out
evaluation methodology, where data from one CMOP is used for
testing and the data from the rest of the CMOPs is used for training.

To analyze algorithm performance, we set different performance
indicator values (targets) for the algorithms to achieve. These were
then used to make predictions about the number of evaluations
an algorithm requires to achieve a proportion of the targets. The
percentages of targets that the algorithm needs to achieve were
50%, 60%, 70%, 80%, and 90%. In addition to this, to simplify the
prediction task, we categorized the number of evaluations into five
evaluation classes, with the last class representing the case where
none of the specified percentages of targets were achieved.

We focused on two distinct experiments. In the first experiment,
we applied the standard approach for algorithm performance predic-
tion, where we used publicly available (baseline) CMOPs for train-
ing and testing the classifier. In the second experiment, we added to
the classifier training set additional bi-objective CMOPs created by
using the functions of the bbob and bbob-constrained benchmark
suites as the two objectives. The constraints of the created CMOPs
were the same as those in the corresponding bbob-constrained
problems. Because of the large number of possible problem combi-
nations (which considerably increases with more objectives), we
decided to focus only on bi-objective 2D CMOPs in this initial study.

The comparison between the results of the two experiments has
shown when and how much using the additional CMOPs helps in
predicting algorithm performance on the baseline CMOPs. Such a
comparison was made possible by using only the baseline CMOPs
as test data in both experiments.

It was observed that, when training on all CMOPs, the predic-
tions of the evaluation classes were improved for lower percent-
ages of targets. However, for higher percentages of targets (like
80% and 90%), better results were obtained when training only on
the baseline CMOPs. As an explanation for this, we presented the
distribution of the evaluation classes and showed that for most of
the additional CMOPs, the algorithms never reached the more chal-
lenging targets. This shows that the additional CMOPs are more

difficult to solve than the baseline CMOPs, and because of this, they
cannot be used to improve the predictions of the baseline CMOPs
for the more challenging targets.

Additionally, we analyzed how many CMOPs have a single best-
performing algorithm. The results showed that, on the lower target
percentages, there is much more algorithm performance diversity
in the additional CMOPs than in the baseline CMOPs. Also, the
number of additional CMOPs for which a single algorithm performs
best is now sufficiently large to redefine the algorithm performance
prediction task into an algorithm selection task, a task which is
more meaningful when dealing with a real-world CMOP.

In future work, we plan to improve the set of additional CMOPs
by analyzing a larger number of problem combinations. The goal
is to collect a set of additional CMOPs with proportional problem
difficulties. However, to achieve this, the main obstacle is still the
long time required for running the algorithms on a large num-
ber of problem combinations. To overcome this obstacle, we will
consider two possible options. The first one is to use the ELA fea-
tures for CMOPs to select the most diverse problem combinations.
The second option is to use the publicly available performances
of single-objective algorithms to select single-objective problems
on which the algorithms performed differently, and combine them
to create a set of CMOPs that will likely have diverse algorithm
performance. Finally, we also plan to analyze CMOPs of higher
dimensions in future studies.
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