l‘)

Check for
updates

Towards Constructing a Suite
of Multi-objective Optimization Problems
with Diverse Landscapes

Andrejaana Andova!2(®) | Tobias Benecke?®, Harald Ludwig?, and Tea Tusar!:?

1 Jozef Stefan Institute, Ljubljana, Slovenia
{andreajaana.andova,tea.tusar}@ijs.si
2 Jozef Stefan International Postgraduate School, Ljubljana, Slovenia,
3 Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
tobias.benecke@Qovgu.de
4 Johannes Kepler University Linz, Linz, Austria
harald.ludwig@jku.at

Abstract. Given that real-world multi-objective optimization problems
are generally constructed by combining individual functions to be opti-
mized, it seems sensible that benchmark functions would also follow this
procedure. Since the pool of functions to choose from is large and the num-
ber of function combinations increases exponentially with the number of
objectives, we need a smart way to choose a reasonably sized and diverse
collection of function combinations to use in benchmarking experiments.
We propose a four-step approach that analyzes the landscape characteris-
tics of all function combinations and selects only the most diverse ones to
form a suite of problems. In this initial study, we test this idea on the pool
of bbob functions and the case of two objectives. We provide a proof of
concept for the proposed approach and its initial results. We also discuss
its limitations to be addressed in future work.
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1 Introduction

One of the purposes of benchmarking is to gain knowledge about algorithm
performance on various test problems, which can be applied when solving real-
world optimization problems. The latter are often computationally expensive,
making it intractable (if not impossible) to perform extensive experiments to
find the best algorithm for the given problem. The more realistic scenario in
such cases is to find some information about the properties of the real-world
problem at hand and solve it using the algorithm that performs best on quick-
to-evaluate test problems with similar characteristics.
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A good choice of benchmark problems is crucial to make this scenario useful
in practice. According to [1], a suite of benchmark problems should be diverse,
containing problems with different characteristics, and representative by includ-
ing difficulties that are found in real-world problems. Its problems should be
scalable and tunable and, in order to facilitate performance evaluation, have
known optima or at least some known best performance. Ideally, the suite would
be continuously updated to prevent the over-fitting of algorithms.

In continuous single-objective optimization, the well-known bbob test suite [6]
satisfies all these requirements. However, there is no equivalent of such a suite in
multi-objective optimization (the bbob-biobj suite [3] is limited to bi-objective
problems). The decades old, still most often used benchmark suites in multi-
objective optimization, namely ZDT [16], DTLZ [5] and WFG [10], are built
following the bottom-up approach, meaning they are designed around the desired
properties of the Pareto-front, which sacrifices real-world relevance of resulting
problems to a simple suite construction procedure and controllable problem prop-
erties [4]. Note that because of the prevalence of these suites in multi-objective
optimization, algorithms have been overfitting to their problems [11], further
motivating the need for a change.

We believe that the alternative approach to problem construction, which uses
single-objective test function combinations to create multi-objective problems,
more closely resembles the real-world conditions and can be used to create a
diverse benchmark suite without the biases brought on by the bottom-up app-
roach. However, simply creating all function combinations from a pool of func-
tions is infeasible due to the high number of resulting problems. With £ functions
to choose from, we can construct (k+77z_1) unique multi-objective function com-
binations (without including permutations of the same functions), where m is the
number of objectives. For example, given £k = 10 functions, we get 55 function
combinations with two objectives, 2002 function combinations with five objectives
and 92 378 function combinations with ten objectives. This is not sustainable and
a more sophisticated strategy is needed to select good function combinations to
form a reasonably sized suite of multi-objective benchmark problems.

In this paper, we propose to use problem landscape characteristics to guide
to the selection of a manageable number of function combinations. The idea is
to compute problem (dis)similarity using exploratory landscape analysis (ELA).
This meets the first requirement for a suite of benchmark problems—its diversity.
To make sure that function combinations are also representative of real-world
difficulties, we use a pool of functions with this quality, the bbob functions (which
are also scalable, tunable, and have known optima). We try this idea in the case
of two objectives. Without a formal way to validate such a construction, we look
at the resulting problems as well as some intermediate steps in the construc-
tion procedure from multiple perspectives to understand the implications of our
choices and find ideas for future improvements.

In the following pages, Sect. 2 provides some background on multi-objective
optimization problems, the bbob and bbob-biobj(-ext) benchmark suites and
the exploratory landscape analysis features used to characterize the problems.
Section 3 details the employed four stepped methodology: (i) generating the base
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set of problems, (ii) computing their ELA features, (iii) selecting a diverse subset
of problems, and (iv) generating similar instances. The results of this procedure
are presented in Sect.4, where we first validate our idea on 2-D problems, for
which the problem landscape can be visualized, then show the results for all
considered dimensions and finally discuss the limitations of our approach and
ideas to improve it. Section 5 concludes the paper with final remarks.

2 Background

In this section, we first clarify the terminology around multi-objective optimiza-
tion problems, followed by a brief introduction to the single-objective bbob func-
tions used to construct the bi-objective problems in this paper. Finally, the ELA
features used to characterize the fitness landscapes are shortly presented.

2.1 Multi-objective Optimization Problems

We are concerned with multi-objective optimization problems of the form:

minimize F%(z) = (f{*(2),..., for(z)), (1)
where z = (z1,...,2,) € S is a search vector from the n-dimensional search
space S C R" and ff : S = R, i = 1,...,m, are parameterized objective
functions, where m > 1 and 8 = (64,...,0,,) € © parameterizes the function
instance.

We use the term function combination to denote the non-instantiated m-tuple
of functions F'(z) = (f1(z),..., fm(z)), while a problem is a particular instance
of the function combination, F?(z) = (f*(z),..., fo(x)). Different instances

of a function might be shifted in the decision and/or objective space, can be
rotated, etc. and are used to test algorithm (in)variability to these changes.

A problem solution z € S dominates another solution y € S when ff i(x) <
fP(y) for all i = 1,...,m and fjoj(a:) < ffj(y) for at least one j = 1,...,m. A
solution z* € S is Pareto optimal if there are no solutions x € S that dominate
2*. All non-dominated solutions represent the Pareto set P of the problem, while
its image in the objective space is called the Pareto front. Additionally, the ideal
point z'9%! in the objective space R™ is defined as the point whose coordinates
equal the optimal values of f(x) for each i = 1,...,m independently. That is,
Zideal — (inf o 21 (2),. .. infres fO (x)). Conversely, the nadir point 2" in
the objective space R™ consists in each objective of the worst value obtained by
a Pareto optimal solution. That is, 2" = (sup,cp f'(2),...,sup,cp for ().

2.2 The bbob Functions

The bbob function suite contains 24 well-known and understood functions in six
dimensions (2, 3, 5, 10, 20, and 40) and 15 instances that change through the
years [6]. The functions have known optima and incorporate various difficulties
found in real-world problems. They were carefully selected to support a variety of
research questions and are categorized into five groups based on their properties:



Towards Constructing a Suite of Problems with Diverse Landscapes 445

separable functions (functions fi to f5),

— functions with low or moderate conditioning (fs to fo),
highly conditioned and unimodal functions (fi1o to f14),

— multimodal functions with global structure (fi5 to fig9), and
— multimodal functions with weak global structure (f2o to fas).

The bbob function suite is implemented in the Comparing Continuous Optimiz-
ers (COCO) platform [9], which supports automated benchmarking using these
problems. Instances are used to measure robustness of stochastic and determin-
istic optimizers alike. So in one benchmarking experiment, an algorithm is run
once on a total of 24 -6 - 15 = 2160 problems.

Two suites of bi-objective problems formed as combinations of the bbob func-
tions were proposed in [3]. The first one, bbob-biobj, contains all function com-
binations of ten manually chosen bbob functions (two from each group), result-
ing in 55 function combinations. The second one, bbob-biobj-ext, extends this
selection by adding additional function combinations where both functions are
different and come from the same group, resulting in 92 function combinations
in total. This extension was proposed to increase the diversity of the problems
and therefore uses the pool of all but one of the 24 bbob functions (it leaves out
the Weierstrass function fi5 because it has multiple global optima, making the
computation of the nadir point intractable). So, in a bi-objective benchmarking
experiment, an algorithm needs to optimize 55 - 6 - 15 = 4950 problems of the
bbob-biobj suite or 92 -6 - 15 = 8280 problems of the bbob-biobj-ext suite.
Both numbers are high and would increase drastically if the same procedure was
used to form suites of problems with more objectives.

When bbob functions are combined to form multi-objective problems, two
new issues appear [3]. The first is that we no longer know all optimal solutions.
The single-objective optima of the functions reveal only the extreme points of
the Pareto front, not the entire Pareto front (nor set). This makes performance
assessment more challenging. The second issue (addressed in Sect. 3.4) is that the
instances of function combinations differ among themselves more than in the case
of single-objective bbob problems, especially when one or both of the functions
are multimodal. This defies the purpose of instances as ‘minor’ modifications
that should not significantly affect the performance of robust algorithms [8].

2.3 ELA Features

Exploratory landscape analysis is a method that extracts information from the
problem landscape [15]. The information is gathered from the objective values
of a sample of problem solutions and represented by so-called features (numer-
ical values) that characterize the landscape. Hundreds of ELA features can be
computed for continuous single-objective problems, see for example the flacco
package [12], while the only collection of ELA features for continuous multi-
objective problems is (to the best of our knowledge) the one presented in [13].
Its implementation is available from https://gitlab.com/aliefooghe/landscape-
features-mo-icops/.
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Although the features from [13] were originally proposed for multi-objective
interpolated continuous optimization problems, they can also be applied to ‘stan-
dard’ multi-objective optimization problems and are consequently used in this
paper. The features are categorized into four types: global, multimodality, evolv-
ability, and ruggedness features.

The global landscape features extract information about the global properties
of the multi-objective landscape. Among the calculated properties we find the
correlation between two objectives, the average and maximum distance among
sampled solutions in the search and the objective space, the proportion of non-
dominated solutions, the hypervolume value, etc.

The features that characterize the landscape multimodality measure the prop-
erties of the local optima. Two different types of local optima are considered:
single-objective local optima and multi-objective local optima. The neighbor-
hood of a solution (the set of the closest samples to this solution) is used to
detect the single-objective local optima—if no neighbor of the target solution
has a better objective value than it, then the target solution is a local optimum.
Similarly, a multi-objective local optimum dominates all its neighboring solu-
tions. The multimodality features measure the percentage of solutions that are
local optima, their distance, etc.

The features that characterize the landscape evolvability measure the propor-
tion of neighbors of a solution that can outperform it. First, the ELA method
records for each solution the proportion of neighbors that dominate, are domi-
nated by, or are mutually non-dominated with the corresponding solution. Then,
it applies some statistical measures to determine how these numbers differ in the
entire sample of solutions.

The last type of features are the ruggedness features, which measure the
ruggedness of the problem landscape by analyzing the correlation of the evolv-
ability features among neighboring solutions.

3 Methodology

We wish to follow the benchmarking procedure used by the COCO platform [§],
which assumes that the function combinations contained in a benchmarking
suite are instantiated in several dimensions and instances. The dimensions are
needed to test the scalability of the algorithms, while the instances are used to
assess their repeatability. This means that we need to compare the properties of
problems for multiple dimensions at the same time, as well as produce instances
that are very similar to each other (which requires effort, as by default, the
multi-objective problem instances can be quite different).

Our procedure to construct a diverse suite of bi-objective problems therefore
consists of the following four steps, described in more detail in the rest of this
section:

1. Generate 15 instances of all function combinations in all considered dimen-
sions (our base set of problems),
2. Compute the ELA features for all these problems,



Towards Constructing a Suite of Problems with Diverse Landscapes 447

3. Select a small suite with diverse problems, and
4. Generate additional similar instances for the selected problems.

3.1 Generating the Base Set of Problems

To generate our base bi-objective problem set, we start with all possible combi-
nations of the bbob functions [6]. However, similarly as in the bbob-biobj-(ext)
test suites [3], we remove the Weierstrass function because it has multiple global
optima, complicating the computation of the nadir point. Furthermore, we regard
both permutations of two functions to be the same, as they produce the same
landscapes. This results in 276 unique function combinations.

Instances of the problems are also generated using the same approach as
in the bbob-biobj-(ext) test suites [3]. This means that we only consider a
bi-objective instance if the single-objective optima have at least the distance of
10~% in the search space, and if the ideal point and the nadir point have at least
the distance of 107! in the non-normalized objective space. These two conditions
need to be satisfied for all considered dimensions (2, 3, 5, 10, and 20). We generate
15 different instances for each problem. Considering 276 unique problems with
15 instances in 5 different dimensions results in in 20 700 problems overall.

3.2 Computing the ELA Features

To generate the ELA features described in Sect.2.3, a sample of solutions is
needed. We create it using the Latin Hypercube Sampling method [14], which
is one of the most widely used sampling methods in evolutionary computation.
To assure stability (avoid that the differences among problem features originate
from different samples rather than the different problem landscape properties),
we use the same sample for all problems of the same dimension. The sample size
is 200 - n, where n is the search space dimension. We evaluate the samples for
each of the five dimensions considered (2, 3, 5, 10, 20) on all problems.

In the next step, we normalize the objective values for each problem using
its ideal and nadir points. The ideal point represents the minimal and the nadir
point the maximal objective values for normalization. We thus use the min-max
normalization on the objective values for each of the solutions in the sample. In
this way, the objective values of all problems are comparable. Note however that
since the nadir point is used for the normalization maximum, solutions worse
than the nadir will have objective values larger than 1.

We then compute 48 features using the code mentioned in Sect.2.3 with
default parameters. This means that the reference point for hypervolume com-
putation equals (1,1) and only one neighbor is used in neighborhood-based fea-
tures. For each of the 276 - 15 = 4140 problem combinations we concatenate the
features of all five dimensions to a single feature vector of size 240.

Based on the computed features, we finally filter out some of the unusable
features and/or problem instances. The filtering is triggered by one of the fol-
lowing reasons: Firstly, if the feature values are the same for all problems. This
happens because some of the features are computed based on the variance of
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the samples in the search space. Since we use the same sample for all problems
of the same dimension, such features are useless in our case and thus removed.
Secondly, if the features values cannot be computed because the sample has
a single non-dominated solution. Some of the features require multiple non-
dominated solutions to compute. Although we are creating problem instances
where the Pareto front is not ‘too small’, this still happens occasionally. As we
consider such problems not interesting from the perspective of multi-objective
optimization (they are not desirable in the test suite), we remove them from the
collection. Lastly, if the feature values cannot be computed because we use only
one neighbor (the default setting). Such features are also removed. In this way,
we get the feature vector of size 202 and 4030 problem instances.

3.3 Selecting a Diverse Subset of Problems

The general idea of selecting a diverse subset of problems used in this paper is
to do so iteratively, always choosing the problem that is most different in terms
of ELA features to the ones already selected. Therefore, we divide the set of all
problems into the subsets of selected and unselected problems. Recall that the
48 ELA features for each dimension are combined into a single, large feature
vector so that the results of all dimensions are included in this selection process.

Because of the high dimensionality of the feature vector, we compare the
problems using cosine similarity instead of some distance metric. Distance met-
rics would demonstrate stark differences because slight variations in individ-
ual dimensions can accumulate over dimensions. When comparing two vectors,
cosine similarity only considers their angle rather than their magnitude, making
it immune to this issue. To determine the similarity between two bi-objective
problem instances, we compute a similarity matrix where the cosine similarity
ranges from 0 (completely unrelated) to 1 (identical problems).

The first problem in this iterative process needs to be selected by hand. In our
work, we chose the first instance of the double sphere problem as the starting
point. The double sphere problem is one of the easiest bi-objective problems
to solve and the only one for which we know the entire Pareto set (the line
segment between the two single-objective optima) and front (the image of this
line segment in the objective space). We believe all suites should contain a well-
understood problem like this, so this is a natural starting point for our procedure.

The remaining problems are chosen from the unselected subset as those that
are the most different from the already selected. This is achieved as follows. First,
we find for each unselected problem the most similar selected one and record
their similarity. Then, we compare these similarities and choose the unselected
problem with the lowest recorded similarity. In other terms, we try to maximize
the minimum similarity between the already selected problems and the ones to
be chosen next. This way, we iteratively add the most dissimilar problem to our
selected subset.

This approach can generate an arbitrary large subset of benchmark prob-
lems. We need to decide when to stop this procedure, i.e., how many function
combinations we wish to have in the suite. This is nontrivial and somewhat
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preference-based, as it requires choosing a trade-off between the suite diversity
and representation abilities on the one hand, and the computational cost and
evaluation time on the other. If the desired suite size is known, the proposed
greedy procedure could also be replaced by a more sophisticated algorithm.

3.4 Generating Similar Instances

Different instances of the same function combination have varying fitness land-
scapes (and consequently features). This can be problematic when creating a
benchmark suite where the instances are supposed to test algorithm repeata-
bility. To solve this problem, we try to find 14 instances that are very similar
to the selected problem instance. This way, we can expect similar algorithm
performance on all instances of the selected problems.

We generate the problem instances for the IV most diverse problems selected
(let us call them target problems) in a post-processing fashion. For each target
problem, we first generate 140 additional instances, the same as in Sect.3.1.
Then, we compute the ELA features as described in Sect.3.2 on these new
instances. This gives us 155 instances for each problem, categorized by the ELA
features. Once again, we use cosine similarity to measure the similarity between
the target problem and each additional instance. Finally, we select 14 instances
that are most similar to the target problem, yielding 15 similar instances.

4 Results and Discussion

In this section, we present the results of applying our methodology on the pool
of the bbob functions. We first show the results of a test run on only the 2-D
problems as a proof of concept for our approach. Then we present the actual
results on multiple dimensions. Finally, we list the limitations of our approach,
proposing ideas to improve it in the future.

4.1 Proof of Concept on 2-D Problems

Given that there is no established way to validate our proposed approach, we
try to gain a better understanding of its workings by applying it only to 2-D
problems, whose landscapes can be visualized. This means that we perform the
entire procedure described in Sect. 3, with the exception of the parts that require
stacking together the features from problems of different dimensions.

We first select an arbitrary function combination that is also included in the
bbob-biobj test suite and therefore has some known properties (see [3] and its
supplementary material website at https://numbbo.github.io/bbob-biobj/ for
more information). This is the function combination (fi, fs), where f; is the
sphere function and fg is the original Rosenbrock function, instantiated with 15
different instances. We use it to visually verify that the way we compute problem
features and measure their similarity works as intended.

Figure1 presents the problem similarity heatmap for the 15 instances of
(f1, fs) where the rows and columns are sorted in such a way that the similar
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Fig. 1. Problem similarity heatmap for the 15 instances of the 2-D function combina-
tion (f1, fs) (function Fy in the bbob-biobj suite) and their corresponding landscape
visualizations using dominance ranking ratio [3,7] show that the size of the Pareto
set (yellow curves) is proportional to the similarity among instance. The instances are
numbered as in the bbob-biobj suite. (Color figure online)

instances (yellow hues) are placed together. Furthermore, the problem landscape
of the different instances is also visualized using dominance rank ratio plots [3,7].
In these plots, the search space is approximated by the grid points and their color
denotes the proportion of other grid points that dominate the current one (the
more such points, the lighter the color). Additionally, yellow is used to denote
the Pareto set approximation (non-dominated grid points).

First, we notice that the problem instances could be grouped into five clusters
based on the values of the similarity matrix. Next, we see that the size of the
Pareto set is proportional to the similarity among instances. On the one hand we
have six mutually similar instances 49, 412, %4, ¢7, ig, and i11, with short Pareto
sets (top left), and on the other hand, three mutually similar instances is, i1,
and iz with long Pareto sets (bottom right). The instances in the first group
are very different from the instances in the last one according to the similarity
matrix as well as their landscape visualizations.

The characterization of the bbob-biob-(ext) problems in [3]|, where the
first five instances of all 92 problems were visually inspected for five prop-
erties (number of Pareto set subsets, number of Pareto front subsets, convex
Pareto front, Pareto set outside of [—5, 5] and number of basins of attraction),
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Fig. 2. Multidimensional scaling of the 48-D space of features to a plane for all 2-D
problems. The 12 most diverse problems (see Fig. 3) are emphasized and labeled with
their consecutive number in black and function instance combination in purple. (Color
figure online)

has found no difference between the first five instances of the 2-D function com-
bination (fi, fs). In this sense, our approach exhibits higher discriminability
powers as it does differentiate between these instances, in fact, they reside in
four of the five denoted clusters. We therefore see that the applied ELA fea-
tures and the cosine similarity metric properly characterize the instances of this
function combination, showing promise of this methodology.

If we use the proposed approach to construct a suite of 12 most diverse 2-D
function combinations, we get the results shown in Fig.2. This plot presents a
Multidimensional Scaling (MDS) projection of all problems from the 48-D space
of ELA features to a plane. MDS chooses a projection so that the distances in
the projected space respect the distances well in the original space (we used
the default MDS implementation from the sklearn Python library to produce
this plot). The darker dots denote our selected function instance combinations.
We can see that they are relatively uniformly distributed over the entire space,
although any such projection needs to be interpreted with caution.

One interesting thing to note is that some bbob functions are included in
multiple combinations, see for example fo3, which was employed three separate
times. This is somewhat counter-intuitive, as we could expect the functions to
repeat themselves only after (almost) all different available functions have been
selected. This might be caused by large differences in some function instances.
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Fig. 3. Similarity to already selected problems when adding new problems to the selec-
tion. The plot on the left shows the similarity itself (which has a large increase at first
and then flattens around 100 problems), while the plot on the right shows the increase
in similarity compared to the previous value. In both plots, the 12th, 20th and 50th
problems are emphasized.

4.2 Results on Multiple Dimensions

Deciding on the number of problems to include in a benchmark requires compro-
mising. On the one hand, we want to select many problems which cover a wide
range of different characteristics. On the other hand, the benchmark should be
of a manageable size to be fit for use in large benchmarking studies. As we can
vary the number of selected problems in our approach, it is beneficial to evaluate
the impact or usefulness of adding each problem by calculating its similarity to
the already selected ones.

Figure 3 shows this in two plots. On the left-hand side plot, we can observe
the similarity of a newly selected problem to the already selected ones for the
first 1000 problems. The right-hand side plot shows the increase in similarity for
each newly selected problem for the first 100 problems. On the left-hand side
plot, a logarithmic growth can be observed, increasing rapidly for the first 100
problems selected, then gradually flattening out. On the plot on the right, we
can see a rugged decline in the similarity increase for all problems, with a notable
peak at the sixth selected problem. Not surprisingly, when only a small number
of problems are included in the suite, it is very beneficial to add more. Selecting
less than 12 problems, therefore, seems undesirable. We see that the similarity to
the already selected problems increases more slowly after the first 12 problems
have been selected. However, the data does not provide a clear cut-off point after
which selecting more problems becomes less effective.

The number of problems selected cannot be determined clearly as it depends
on many factors. In this paper, 12 problems were selected to strike a balance
between diversity, representation, and and the ability to execute and show results
of benchmarking experiments in the scope of scientific work.
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Fig. 4. Multidimensional scaling of the 202-D space of features to a plane for problems
with multiple dimensions. The 12 most diverse problems are emphasized and labeled
with their consecutive number in black and function instance combination in purple.
(Color figure online)

Similar to the results on the 2-D problems in Fig. 2, Fig.4 shows the multi-
dimensional scaling of the ELA features to a plane for the problems in all used
dimensions. We can again notice that the 12 most diverse problems resulting
from our approach are rather uniformly distributed over the space, although
given that the feature space is 202-D in this case, care must be taken when
making assumptions based on such visualizations.

From the point of view of included bbob functions, we can see that even more
(compared to the previous section) have been selected multiple times. That is,
each of f11, fi2, foo and fa3 has been used three times in the top 12 most diverse
problems. We are currently unable to explain why some repeated functions are
preferred over others that have not yet been included.

Finally, Fig.5 visualizes with violin plots the distribution of the cosine sim-
ilarity values between the target problem (one of the 12 problem instances
selected to be included in the suite) and all 155 instances of the same problem
(in blue) as well as between the target problem and the closest 15 instances of
the same problem (in orange). This is done for all 12 target problems. Note that
the 155 problem instances are the result of the procedure described in Sect. 3.4.

We can observe that the similarity of the closest instances differs from one
function combination to the next. On some combinations, e.g., (fi2, fa0) and
(f12, f15), they are very close, while for others (notably the double sphere func-
tion (f1, f1), where one of the closest instances is rather far away from the target
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Fig. 5. Distribution of cosine similarity values between each target problem and all
155 corresponding problem instances (in blue), and the target problem and its closest
15 instances (in orange). (Color figure online)

problem) this is not the case. This means that further instances would need to be
generated on such problems to achieve better similarity of the top 15 instances.

Additional insights into the fitness landscapes can be gained by analyzing the
distributions in the blue violin plots. For example, in the function combination
(f1, f1) we see two groups forming, one close to the target problem in the simi-
larity range of [0.8,1.0] and one more distant with a median similarity at around
0.4. This indicates that different instances of this function combination might
result in two different problem groups in terms of the ELA features. Interestingly,
(f1, f23), which likewise includes the sphere function f;, also seems to produce
two clusters of problems. On the other hand, some function combinations seem
to produce very diverse instances that cover the entire range of similarity to the
target problem, like (fi2, foo) and (fi2, f15). Other combinations, like (f15, fo3)
and (f17, fo1) show only one large group with some outlying instances. A more
elaborate evaluation is needed to understand why this happens.

This analysis has shown that a fixed number of function instances is, in
general, not enough to achieve close instances. An iterated approach where
instances are generated until a closeness threshold has been met might work
better (although it could also take a long time).

4.3 Limitations

Our work presents a first attempt at creating a new benchmarking suite by
using ELA features to ensure its diversity. While we were able to show that the
idea works quite well (especially on the 2-D problems), we acknowledge some
limitations of this initial study that need to be addressed in the future.

Our procedure assumes that all problems are instantiated and characterized
before the selection takes place. Currently, calculating the ELA features is the
bottleneck of the proposed methodology. If many more function combinations
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would have to be explored (for example, in the case of many-objective problems),
this could become intractable and an alternative approach that does not require
characterizing all function combinations would need to be implemented (perhaps
by filtering unpromising function combinations based on the properties of single
functions or combinations of two functions).

No quantifiable goal and/or evaluation of the proposed approach exists. Sev-
eral concepts that we use throughout the study, such as problem diversity,
instance closeness, and suite size, are hard to quantify in terms of thresholds
that denote a satisfactory value. This means that it is also hard to judge whether
our procedure was able to meet its goals. One particular issue that we need to
explore is whether the methodology optimizes for outliers. This could result in a
suite that is not representative of real-world conditions and therefore go against
our goal. One way to evaluate the usefulness of a benchmark suite is to show
that it differentiates between algorithms. We will address this in future work.

Sensitivity to Parameters. While we have not tested this extensively yet, our
experiments suggest that the resulting problem selection strongly depends on
various parameters of our approach, such as the selection of the applied ELA
features, the choice of dimensions to be included in the construction, the number
and variety of instances, the initial selected problem, etc. This sensitivity would
first need to be studied more comprehensively and then decreased where possible
(although, of course, the reliance on some parameters cannot be eliminated).

Questionable Scalability in Search Space Dimension. With increasing search
space dimension, the sample size used for computing the ELA features increases
only linearly, which seems not to be enough for properly categorizing high-
dimensional problems. We need to look into this issue more deeply.

Questionable Scalability in Objective Space Dimension. So far, the approach
has only been tested on bi-objective problems. In order for the resulting bench-
mark to be truly representative of the real world, where many problems have
more than two objectives [2], the approach should be tested also using three,
five and more objectives. This is closely tied with the first limitation.

Using Default ELA Features. While using default ELA features was the ‘safe
choice’ for this set of initial experiments, we have realized that it might have been
flawed. For example, a lot of the used features might not contain useful informa-
tion for predicting algorithm performance, and thus, applying feature selection
methods would remove the unnecessary noise in the feature space. Furthermore,
we currently used the default setting for calculating the ELA features. However,
now the hypervolume reference point coincides with the nadir point, meaning
that all non-dominated solutions that are worse than the nadir do not contribute
to the hypervolume. We should therefore be looking at alternative hypervolume
measures, such as the indicator Iyv4 from [8], which resolves this issue. More-
over, using only one neighbor might be questionable, we need to explore whether
having two or three neighbors works better.
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5 Conclusions

Designing multi-objective benchmark problems as combinations of individual
single-objective functions closely follows the construction of real-world problems
and should therefore be preferred to the bottom-up approach. However, one
cannot simply employ all possible function combinations, as they are too many
to be usable in practice and a smart way to choose a reasonably sized and diverse
collection of function combinations is needed.

In this work, we proposed to use problem landscape characteristics (computed
as ELA features) to create a benchmark suite of diverse and representative multi-
objective optimization problems of the chosen size. The main idea is to construct
the suite by adding problems whose cosine similarity in the ELA feature space
to the already selected problems is minimal. The approach was tried on bi-
objective combinations of the bbob functions, which are scalable, tunable, and
contain difficulties found in real-world problems.

We first used a simplified procedure formulation to prove on 2-D problems
that our concept is promising, and then showed results of the actual procedure
that uses all considered dimensions. Finally, we listed the limitations of this
initial approach that need to be addressed in future work.
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