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ABSTRACT
When solving new optimization problems, it is crucial that al-
gorithms are selected capable of both $nding the best solutions
and computing them in reasonable amounts of time. However,
testing multiple algorithms is time-consuming and impractical.
A solution to this would be to build a model that automatically
selects the algorithm that performs best on a new problem. In this
work, we build machine learning models to automatically predict
algorithm performance on constrained multiobjective optimiza-
tion problems (CMOPs) using exploratory landscape analysis
(ELA) features. The results showed a high mean absolute error,
which indicates that, with the currently available benchmarks and
ELA features, automatically predicting algorithm performance
on CMOPs is a very hard task.
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1 INTRODUCTION
The common way of solving black-box constrained multiobjec-
tive optimization problems (CMOPs) is to use multiobjective opti-
mization algorithms with constraint-handling techniques (CHTs).
However, deciding which speci$c algorithm to use, which CHT
to include, and which setting of the algorithm parameters to
apply is not trivial.

In the last few years, several authors have tried to $nd ways
of automatically selecting evolutionary algorithms for solving
single-objective optimization problems [10, 13, 7]. The core con-
cept behind their work is to extract features of benchmark single-
objective optimization problems and construct a model for pre-
dicting which algorithm performs best for each individual prob-
lem. When dealing with a new problem then, the model is able
to automatically decide which algorithm to use for solving the
problem.

Extracting optimization problem features can be done using
exploratory landscape analysis (ELA). This is a technique that
takes a sample of solutions and their $tness values as input and,
based on this, extracts statistical features about the problem.
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These features ideally characterize the problems so that similar
problems have similar feature values.

In this work, we propose a $rst step towards automatic algo-
rithm selection for CMOPs. This task is much harder for con-
strained multiobjective optimization, because, in this area, there
are fewer benchmark problems available, and the ELA methods
are not as well developed as in single-objective optimization.

Although the ultimate goal of our work is automatic algorithm
selection, we here focus on predicting the algorithm performance
of three widely used algorithms. By proposing a method for pre-
dicting algorithm performance for a few well-known algorithms,
researchers can easily extend the set of algorithms, in the future.

The paper is further organized as follows. In Section 2, we in-
troduce the theoretical background of constrainedmulti-objective
optimization. In Section 3, we brie%y describe the ELA features
used in this study. In Section 4, we describe the algorithm perfor-
mance measure used as the prediction target value. In Section 5,
we present the experimental setup and, in Section 6, the obtained
results. Finally, in Section 7, we summarize the $ndings and
outline ideas for future work.

2 THEORETICAL BACKGROUND
A CMOP can be formulated as:

minimize 𝐿𝐿 (x), 𝑀 = 1, . . . ,𝑁
subject to 𝑂𝑀 (x) → 0, 𝑃 = 1, . . . ,𝑄,

(1)

where x = (𝑅1, . . . , 𝑅𝑁 ) is a solution vector of dimension 𝑆 , 𝐿𝐿 (x)
are objective functions, 𝑂𝑀 (x) are constraint functions, and𝑁 and
𝑄 are the numbers of objectives and constraints, respectively.

In multiobjective optimization, we use the term search space
𝑇 , representing a 𝑆 dimensional space where all possible solution
vectors x are located. Additionally, we can de$ne the𝑁 dimen-
sional objective space 𝑈 = {𝐿 (x) | 𝑅 ↑ 𝑇} which represents the
space consisting of objective values for solutions.

A solution x is feasible, if it satis$es all constraints, 𝑂𝑀 (x) → 0,
for 𝑃 = 1, . . . ,𝑄 . A feasible solution 𝑅 is said to dominate another
feasible solution y if 𝐿𝐿 (x) → 𝐿𝐿 (y) for all 1 → 𝑀 → 𝑁 , and
𝐿𝐿 (x) < 𝐿𝐿 (y) for at least one 1 → 𝑀 → 𝑁 . A feasible solution
x↓ is a Pareto-optimal solution if there exists no feasible solution
x ↑ 𝑇 that dominates x↓. All feasible solutions constitute the
feasible region 𝑉 . All nondominated feasible solutions form the
Pareto set 𝑇o, and the image of the Pareto set in the objective
space is the Pareto front, 𝑈o = {𝐿 (x) | x ↑ 𝑇o}.

Nondomination ranking is a concept in multiobjective opti-
mization that helps sort the solutions in a population into fronts,
based on their dominance. Thus, all nondominated solutions get
a nondomination rank of 1, solutions that are dominated only by
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the nondominated solutions get a nondomination rank of 2, and
so on.

The point in the objective space with the best objective values
is the ideal point 𝑊𝑂 = (minx↑𝑃o 𝐿1 (x), . . . ,minx↑𝑃o 𝐿𝑄 (x)).

The nadir point represents the point in the objective space
with the worst $tness values across all solutions in the Pareto
front 𝑊𝑅 = (maxx↑𝑃o 𝐿1 (x), . . . ,maxx↑𝑃o 𝐿𝑄 (x)).

The most widely used quality indicator in multiobjective op-
timization is the hypervolume indicator [17]. It maps the set of
solutions found by an algorithm to a measure of the region dom-
inated by that set and bounded by a given reference point.

3 ELA FEATURES FOR CONSTRAINED
MULTIOBJECTIVE OPTIMIZATION
PROBLEMS

ELA is a methodology that extracts the features of an optimiza-
tion problem from a sample of its solutions. These features are
usually statistical relations between the solutions and are de-
signed by experts. Many ELA feature sets were designed for
single-objective optimization problems. However, only a few
feature sets exist for CMOPs.

State-of-the-art features for CMOPs were collected by Alsouly
et al. [1], who adopted all of the fast-computing features for
CMOPs from the related work, and also proposed some addi-
tional features. The set of all features can be divided into three
groups that describe: the multiobjective landscape, the violation
landscape, and the combination of the two landscapes – the mul-
tiobjective violation landscape.

All three groups of features consist of global and random walk
features. The global features were calculated on a sample of size
1000·𝑆 . The randomwalk features are computed during a random
walk, where statistics are derived from neighboring solutions
that form a sequence within the random walk. The random walk
neighborhood is of size 𝑋 = 2 · 𝑆 + 1, the length of the random
walk is equal to (𝑆/𝑋 ) · 103, and the step size is 2% of the range
of the search space.

In themultiobjective landscape group, the features are designed
to describe the objectives and the relations between them. Thus,
the global features in this group include the proportion of un-
constrained Pareto optimal solutions, the hypervolume of the
unconstrained Pareto front, the correlation between the objective
values, statistics on the unconstrained ranks, etc. The random
walk features in this group include statistics on the distance
between random walk neighbors in the objective space.

In the violation landscape group, the features are designed to
describe the constraints of the problem. Thus, the global features
in this group include statistics of the constraint violations, while
the random walk features include statistics of the constraint
violations between random walk neighbors.

In themultiobjective violation landscape group, the features are
designed to describe the relations between the objectives and the
constraints. Thus, the global features in this group include the
proportion of feasible solutions, the proportion of Pareto optimal
solutions, the hypervolume, statistics on the correlations between
objectives and constraints, statistics on the distance between
solutions in the Pareto front, etc. The random walk features in
this group include statistics on the dominance relations between
random walk neighbors.

Another state-of-the-art feature set for CMOPs is the one pro-
posed by Vodopija et al. [14]. This feature set includes important
information about CMOPs, including their multimodality and

other landscape characteristics. However, to calculate these fea-
tures one needs a larger sample size (a sample size of 250,000),
which makes these features computationally very demanding.

In our study, we used both the features by Alsouly et al. and
Vodopija et al.

4 EMPIRICAL CUMULATIVE DISTRIBUTION
FUNCTIONS

One drawback of using hypervolume as the quality indicator in
constrained multiobjective optimization is that it does not take
into consideration infeasible solutions. For this reason, Vodopija
et al. [15] proposed a new quality indicator designed speci$cally
for constrained multiobjective optimization that generalizes the
hypervolume-based quality indicator 𝑌𝑆𝑇+ from [5] as follows:

(1) When there are no feasible solutions in the set, the quality
indicator takes on the value of the smallest constraint
violation of all solutions in the set plus a threshold 𝑍↓.

(2) When the set contains at least one feasible solution, the
quality indicator equals the value of 𝑌𝑆𝑇+ bounded above
by the threshold 𝑍↓, i.e., it equals min{𝑌𝑆𝑇+, 𝑍↓}.

The threshold value 𝑍↓ ensures that any infeasible solution will
be deemed worse than any feasible one.

To measure algorithm performance during the algorithm run,
we keep track of how many function evaluations, called run-
times, are needed to reach a particular quality indicator value,
called target. We do so for a number of targets and visualize these
runtimes using the Empirical Cumulative Distribution Function
(ECDF) [5]. The ECDF measures the proportion of achieved tar-
gets at a given runtime by the given algorithm. Whenever an
algorithm achieves a target, the value of the measure rises. Thus,
the maximum value that can be achieved by an algorithm is equal
to 1, meaning that the algorithm achieved all the targets.

In our work, we want to express algorithm performance in a
single valuewhichwill serve as the target of ourmachine learning
(ML) problem. However, the ECDF is given for any number of
function evaluations (up to a maximum value). To end up with
a single value, we use the area under the curve (AUC) of the
ECDF, in short AUC-ECDF. This way, the ML method needs to
predict a single target variable, which also includes information
about the convergence of the algorithm over time. To normalize
the AUC-ECDF value, we divide it by the maximum number of
function evaluations.

5 EXPERIMENTAL EVALUATION
We focus on constrained bi-objective optimization problems
with 2D, 3D, and 5D search spaces and, thus, use three widely
used benchmarks for constrained multiobjective optimization
– MW [9], CF [16], and C-DTLZ [6]. Because some benchmark
problems are only de$ned for more than 3D or more than three
objectives, the total number of problems per dimension di&ers.
Speci$cally, for 2D, we have 8 out of 14 MW problems, 0 out of 10
CF problems, and 5 out of 6 C-DTLZ problems. For 3D, we have
14 out of 14 MW problems, 5 out of 10 CF problems, and 6 out of
6 C-DTLZ problems. For 5D, we have 14 out of 14 MW problems,
7 out of 10 CF problems, and 6 out of 6 C-DTLZ problems.

The focus of this work is on predicting the algorithm perfor-
mance of three multiobjective optimization algorithms – NSGA-
III [6], MOEA/D-IEpsilon [4], and C-TAEA [8]. Each algorithm is
equipped with a di&erent constraint-handling technique. Due to
the stochastic nature of the algorithms, we conduct 31 individual
runs of each algorithm on every given problem. This approach
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allows us to obtain more precise values for algorithm perfor-
mance. The target of the ML task for each problem is the mean
AUC-ECDF value over all 31 runs of the algorithm. To facilitate
the comparison of results, we use the same parameter settings
for all algorithms – the population size 100 ·𝑁 , and the number
of generations 60 · 𝑆 .

The ELA features are calculated stochastically; each time the
feature calculation is started, a di&erent sample of solutions is
selected. To handle this, we created 30 samples using the Latin hy-
percube sampling method, resulting in 30 sets of features (learn-
ing instances) for each problem.

Predicting algorithm performance is a regression task and,
therefore, we use regression ML methods – Linear Regression,
Random Forest Regression (RF Regression) [2], and Epsilon-
Support Vector Regression (SVR) [3]. We also included a dummy
model in the comparison, which predicts the mean value of the
target variable in the training data. We utilized the scikit-learn
implementations [11] of these methods with default parameter
settings. We tested algorithm parameter tuning as well, but there
was no signi$cant improvement of the results.

To evaluate the performance of the ML models, we use two
evaluation methodologies – leave-one-sample-out and leave-one-
problem-out. In the leave-one-sample-out evaluation, we use
one instance as test data and the rest of the instances (including
instances from other problems) as training data. We repeat this
process for each instance in our dataset and take the average
mean absolute error as an evaluation metric. Since all remaining
instances of the problem are used during the training of the
model, we expected the results from this evaluation methodology
to be overly optimistic.

The leave-one-problem-out evaluation methodology is more
fairly designed. In the real world, we have no information about
the target problem available in the training data. Thus, in the
leave-one-problem-out evaluation, we use all instances of a prob-
lem as test data and the instances from the rest of the problems
as training data. This process is repeated for each problem in
the dataset and the average mean absolute error is used as an
evaluation metric.

6 RESULTS
The results showed amean absolute error in the leave-one-sample-
out evaluation lower than 0.01. This result is overly optimistic
and shows that same-problem instances are similar to each other.

The results obtained in the leave-one-problem-out evaluation
are presented in Table 1. These results show that none of the
ML models performs signi$cantly better than the dummy model.
Moreover, because the target variable was normalized to [0,1], a
mean absolute error between 0.09 and 0.22 is large. This indicates
that the tested models trained on the current benchmarks with
the current ELA features cannot be used to predict algorithm
performance accurately. Also, we note that for each problem
dimensionality, there is a di&erent ML method that performs
best. For 2D problems this is Linear Regression, for 3D problems
RF Regression, and for 5D problems SVR.

A signi$cantly worse performance is achieved by Linear Re-
gression on 5D problems. When attempting to understand the
cause of this, we noticed that Linear Regression achieves simi-
lar results to the other models for all problems except for one,
for which it performs very poorly. A possible explanation for
this could be that Linear Regression is a simple and unbounded
regression method, and when a problem is di&erent from the

Table 1: Mean absolute error of the predicted AUC-ECDF
values with respect to the true values for 2D, 3D, and 5D
problems in leave-one-problem-out evaluation.

Dim ML method NSGA-III MOEA/D C-TAEA

2D

Dummy 0.18 0.17 0.18
Linear Regression 0.16 0.14 0.18
RF Regression 0.19 0.18 0.18

SVR 0.20 0.21 0.19

3D

Dummy 0.14 0.12 0.13
Linear Regression 0.22 0.12 0.15
RF Regression 0.12 0.09 0.11

SVR 0.14 0.12 0.13

5D

Dummy 0.14 0.10 0.12
Linear Regression 0.70 0.42 0.75
RF Regression 0.13 0.09 0.12

SVR 0.10 0.09 0.10

rest in the training set it predicts very high target values, which
increase the mean absolute error.

To better understand why the ML models performed poorly
under the leave-one-problem-out evaluation, we used t-SNE [12]
to reduce the dimensionality of the ELA features to 2D and vi-
sualized the results, as shown in Figure 1. Here we notice that
samples from the same problem form clusters. This explains why
the results of the leave-one-sample-out evaluation are signi$-
cantly better than the leave-one-problem-out evaluation – in the
former case, the ML task transforms into predicting the speci$c
problem to which a sample belongs.

Analyzing the colors indicating the AUC-ECDF values of the
three algorithms in Figure 1, we notice all algorithms perform sim-
ilarly on almost all problems. This raises the question of whether
a di&erent algorithm parameter setting should be considered, em-
phasising the di&erences in the performance of the algorithms.
For example, we could check the algorithm performance on a
smaller number of generations.

When analyzing the colors showing the AUC-ECDF values
of an algorithm in a single dimension, we notice there is no
visible pattern. This holds for each problem dimension-algorithm
combination. Notably, we often $nd high and low AUC-ECDF
values appearing close to each other in the plot.

The results show that, with the current benchmarks and ELA
features, predicting algorithm performance is very di’cult.

7 CONCLUSION
In this work, we attempted to predict the algorithm performance
on CMOPs, using three well-known multiobjective optimization
algorithms. For this purpose, we used ELA features specially
designed for CMOPs as inputs to a ML model. To calculate the
ELA features, we used 30 samples for each problem, resulting
in 30 learning instances per problem. The target of prediction
was the algorithm’s AUC-ECDF value, computed using the qual-
ity indicator designed explicitly for constrained multiobjective
optimization [15].

We tested three ML regression methods – Linear Regression,
RF Regression, and SVR. To compare the results from these meth-
ods, we also used a dummy model, which always predicts the
mean value of the target variable in the training data. To evaluate
the results, we used two evaluation methodologies – leave-one-
sample-out and leave-one-problem-out.
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Figure 1: t-SNE visualizations of 2D, 3D and 5D problems. The colors in the !rst row of the plots represent the problems
included in the benchmark. In the remaining rows, the colors represent the algorithm performancemeasured by AUC-ECDF
for each algorithm considered.

In the leave-one-sample-out evaluation, very optimistic re-
sults were found, with a mean absolute error lower than 0.01.
However, the results from the leave-one-problem-out evaluation
were poor; none of the ML models signi$cantly outperforms the
dummy model. To explain why this occurs, we used the t-SNE
method to reduce the dimensionality of the ELA features and
plotted them in a color scheme indicating the performance of
the algorithms. These visualizations show no visible patterns in
the algorithm performance $gures. Thus, we conclude that, with
the currently available ELA features and benchmark problems,
predicting algorithm performance is a hard task.

In future work, we aim to address two distinct aspects of the
problem. The $rst is to improve the ELA features via automatic
construction using an end-to-end deep neural network. The sec-
ond is to reduce the complexity of the ML task by simplifying the
target. This could be achieved by changing the task to a classi$ca-
tion task or by changing the target to the number of generations
required for an algorithm to reach a feasible solution.
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