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ABSTRACT
Trying numerous algorithms on an optimization problem that we
encounter for the %rst time in order to %nd the best-performing
algorithm is time-consuming and impractical. To narrow down
the number of algorithm choices, high-level features describing
important problem characteristics can be related with algorithm
performance. However, characterizing optimization problems for
this purpose is challenging, especially when they includemultiple
objectives and constraints. In this work, we use machine learning
(ML) to automatically predict high-level features of constrained
multi-objective optimization problems (CMOPs) from low-level,
exploratory landscape analysis features. The results obtained on
the MW benchmark show a signi%cant di&erence in classi%cation
accuracy depending on the applied evaluation approach. The poor
performance of the leave-one-problem-out strategy indicates
the need for further investigation of the relevance of low-level
features in CMOP characterization.

KEYWORDS
constrained multi-objective optimization, exploratory landscape
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1 INTRODUCTION
Predicting high-level features of constrained multi-objective op-
timization problems (CMOPs) is important as it can help de-
cide which algorithm to use when faced with a new (real-world)
CMOP. The structure of the objective and constraint functions are
usually unknown for such problems. Moreover, the evaluation of
problem solutions might be very time-consuming. In such cases,
it is bene%cial to know certain high-level features of the CMOP,
which eases the selection of an appropriate multi-objective op-
timization algorithm or constraint handling technique to solve
the problem e’ciently.

Two frequently considered high-level features of CMOPs are
the problem type and connectivity of the feasible region. The
problem type characterizes whether and how the constraints
change the Pareto front of the problem. As pointed out by Tanabe
et al. [8], this feature is useful as it indicates whether the problem
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needs to be treated as constrained or unconstrained. Moreover,
Ma et al. [5] showed which constraint handling techniques are
more successful in solving CMOPs, depending on the problem
type. Similarly, the connectivity of the feasible region (or problem
connectivity for short) de%nes the multimodality of the problem
violation landscape and, therefore, crucially a&ects the choice of
algorithms that can solve the problem e’ciently [5].

High-level features of a new problem can be predicted using
automatically calculated low-level problem features. The most
widely known low-level features in evolutionary optimization
are the exploratory landscape analysis (ELA) features. They were
initially introduced to characterize single-objective optimization
problems and implemented in the (acco package [2]. More re-
cently, Liefooghe et al. [4] proposed a set of ELA features for
multi-objective optimization problems, and Vodopija et al. [10]
introduced additional ELA features for CMOPs.

In this work, we use the ELA features from [4] and some from
[10] to investigate whether they are useful for predicting problem
type and connectivity. To the best of our knowledge, this is the
%rst attempt to predict the high-level features of CMOPs. A simi-
lar study was performed by Renau et al. [7] on single-objective
optimization problems. They used ELA features to classify the op-
timization problem. When splitting the data into training and test
sets, instances from the same problemwere used for both training
and testing. The %rst of our three experiments follows this setup.
However, because this evaluation methodology is not useful in
practice (the class of a new real-world problem is unknown), a
second experiment is performed using the leave-one-problem-
out methodology. Finally, the third experiment varies the number
of target problem instances used for training to gain further in-
sight in the di’cult task of predicting high-level features from
low-level ones.

The paper is further organized as follows. In Section 2, we in-
troduce the theoretical background of constrainedmulti-objective
optimization. In Section 3, we explain the features used in this
study. In Section 4, we present the considered test problems, and
in Section 5 the experimental setup. In Section 6, we report on the
obtained results. Finally, in Section 7, we provide a conclusion
and present the ideas for future work.

2 THEORETICAL BACKGROUND
A CMOP can be formulated as:

minimize 𝐿𝐿 (𝑀), 𝑁 = 1, . . . ,𝑂
subject to 𝑃𝑀 (𝑀) → 0, 𝑄 = 1, . . . ,𝑅,

(1)

where 𝑀 = (𝑀1, . . . , 𝑀𝑁 ) is a search vector of dimension 𝑆 , 𝐿𝐿 :
𝑇 ↑ R are objective functions, 𝑃𝑀 : 𝑇 ↑ R constraint functions,
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𝑇 ↓ R𝑁 is the search space, and 𝑂 and 𝑅 are the numbers of
objectives and constraints, respectively.

A solution 𝑀 is feasible, if it satis%es all constraints 𝑃𝑀 (𝑀) → 0
for 𝑄 = 1, . . . ,𝑅 . For each constraint 𝑃𝑀 we can de%ne the con-
straint violation as 𝑈𝑀 (𝑀) = max(0,𝑃𝑀 (𝑀)). The overall constraint
violation is de%ned as

𝑈 (𝑀) =
𝑂∑
𝑃

𝑈𝑀 (𝑀). (2)

A solution 𝑀 is feasible i& 𝑈 (𝑀) = 0.
A feasible solution 𝑀 ↔ 𝑇 is said to dominate another feasible

solution 𝑉 ↔ 𝑇 if 𝐿𝐿 (𝑀) → 𝐿𝐿 (𝑉) for all 1 → 𝑁 → 𝑂 , and 𝐿𝐿 (𝑀) <
𝐿𝐿 (𝑉) for at least one 1 → 𝑁 → 𝑂 . A feasible solution 𝑀↗ ↔ 𝑇 is a
Pareto-optimal solution if there exists no feasible solution 𝑀 ↔ 𝑇
that dominates 𝑀↗. All feasible solutions constitute the feasible
region, 𝑊 = {𝑀 ↔ 𝑇 | 𝑈 (𝑀) = 0}, and all nondominated feasible
solutions form the Pareto set, 𝑇o. The image of the Pareto set in
the objective space is the Pareto front, 𝑋o = {𝐿 (𝑀) | 𝑀 ↔ 𝑇o}.

3 EXPLORATORY LANDSCAPE ANALYSIS
ELA is a selection of techniques able to analyze the search and
objective space of a problem, their correlation and their charac-
teristics with the goal of identifying the features important for
the performance of optimization algorithms. To extract the ELA
features, one needs to %rst generate a sample of solutions. The
ELA features use statistical methods to characterize the problem
landscape. Thus, one can use an arbitrary sample size. However,
the ELA features are generally more accurate for large sample
sizes. The ELA features proposed by Liefooghe et al. [4] and
used also in this work can be divided into four categories: global,
multimodality, evolvability, and ruggedness features.

The global features capture certain global problem properties,
for example, the correlation between the objective values, average
and maximum distance between solutions in the search space and
the objective space, the proportion of non-dominated solutions,
the average and maximum rank of solutions, etc.

The multimodality features assess the number of local optima
in the objective space. They are computed for the bi-objective
space and also for each objective separately, in both cases by
analyzing the neighbourhood of each solution. If a solution domi-
nates its neighbors (or has a better objective value than its neigh-
bors), it is de%ned as a local optimum. The multimodality features
comprise the proportion of solutions that are locally optimal, the
average and maximum distances between local optima, etc.

The evolvability features describe how fast a local optimizer
would converge towards an optimum. They are calculated by
analyzing how many neighboring solutions are dominated by,
dominating, or incomparable with a given solution.

The ruggedness features measure the correlation between the
information and quality from neighboring solutions – larger cor-
relation means a smoother landscape. The features are calculated
by using Spearman’s correlation coe’cient on the evolvability
features between each pair of neighboring solutions.

In addition, we include four ELA features from [10] that de-
scribe the violation landscape and its relation with the objective
space. The %rst feature is the feasibility ratio. It is expressed as
the proportion of feasible solutions in the sample and is one
of the most frequently used features in categorizing violation
landscapes. The second feature is the maximum value of overall
constraint violation values in the sample. The last two features
measure the relationship between the objectives and constraints.

Table 1: High-level features of the MW test problems.

Problem Type Connectivity

MW1 II Disconnected
MW2 I Disconnected
MW3 III Connected
MW4 I Connected
MW5 II Connected
MW6 II Disconnected
MW7 III Connected
MW8 II Disconnected
MW9 IV Connected
MW10 III Disconnected
MW11 IV Disconnected
MW12 IV Disconnected
MW13 III Disconnected
MW14 I Connected

They are the minimum and maximum correlations between the
objectives and the overall constraint violation.

4 TEST PROBLEMS
We base this study on 14 CMOPs proposed by Ma et al. [5] and
called MW1–14. In addition to proposing the problems, the au-
thors also describe them with high-level features, such as the
problem type and connectivity of the feasible region. The values
of these two high-level features for each MW problem are listed
in Table 1.

Many of the ELA features proposed by Liefooghe et al. [4]
can only be calculated for bi-objective optimization problems.
Therefore, we investigate only the bi-objective versions of the
MW problems although three of them are scalable in the number
of objectives. All MW problems are also scalable in the num-
ber of variables. We use 5-dimensional problems to match the
experimental setup from [7].

5 EXPERIMENTAL SETUP
In preliminary experiments, we used six sampling methods from
the ghalton [1] and scipy [9] Python libraries: gHalton, Halton,
Sobol, Latin hypercube sampling, optimized Latin hypercube
sampling, and uniform sampling [3]. The results have shown
that similar prediction accuracies are obtained when using data
provided by any of these sampling methods. For this reason,
we only present the results obtained using the Sobol sampling
method in the rest of the paper.

The Sobol sampling method generates a sample set by parti-
tioning the search space and %lling each partition with a sample
solution. We generate additional Sobol sample sets using the
Cranley-Patterson rotation [3]. The solutions from the original
sample set are rotated using a random shift of each dimension,
thus creating new sample sets that preserve the properties of
the Sobol sampling. The modulo operation keeps the shifted val-
ues within the unitary interval. This approach was also used by
Renau et al. [7].

Following this approach, we generate 100 sets of samples,
each with 512 solutions, which we then evaluate on all 14 MW
benchmark problems. For each problem and sample set pair, we
compute 46 ELA features, which represent a single instance in
the data. As a result, by evaluating the 100 sample sets on each
of the 14 test problems, we get 1400 data instances. We then use
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these data instances and the corresponding high-level problem
features (problem type and connectivity) to train a classi%er for
predicting the high-level problem features.

We use two widely used machine learning (ML) methods for
classi%cation: the Random Forest (RF) classi%er and the k-Nearest
Neighbors (KNN) classi%er. The reason for choosing these classi-
%ers instead of some others is that, usually, RF performs favorably
compared to other ML classi%ers. KNN, on the other hand, uses
the distance between solutions as a performance metric, which is
useful when analyzing the obtained classi%cation results visually.
For both RF and KNN, we apply the implementation from the
scikit-learn library [6]. For KNN, we keep the default settings,
while for RF we train 100 trees.

We perform three experiments that di&er in the classi%er eval-
uation methodology. In the %rst experiment, we base the evalua-
tion methodology on the work by Renau et al. [7], where the data
is split by using instances from the same problem for both train-
ing and testing. There, 50% of all instances are used for training,
and the remaining 50% for testing. Furthermore, we take care
of dividing the instances into training and test sets so that the
proportion of instances from each problem is equal in both sets.

However, this methodology does not correspond to the real-
world scenario where we want to learn the high-level features of
a problem encountered for the %rst time. Therefore, we use the
leave-one-problem-out evaluation methodology in the second
experiment. Here, the instances from a single problem are used
for testing, and the instances from all other problems for training.
The procedure is repeated for all problems and the classi%cation
accuracy is calculated as the average over all train-test splits.

Finally, the third experiment is performed to see how adding
target problem data to the training set in(uences the resulting
classi%cation accuracy. In this experiment, we vary the percent-
age of target problem data that is used for training between 0%
and 99%with the step of 1%.When it equals 0%, no target problem
data is used for training, which corresponds to the leave-one-
problem-out methodology of the second experiment. Note that
this setup never equals the one from the %rst experiment because
here the data of all other (non-target) problems is always used
for training. Again, this procedure is repeated for all problems
and we report the average classi%cation accuracy.

To better understand the task we are trying to solve, we visu-
alize the classes by %rst reducing the dimensionality of the fea-
ture space from 46-D to 2-D using Pairwise Controlled Manifold
Approximation Projection (PaCMAP) [11]. We use the Python
package pacmap with default parameter values.

6 RESULTS
The results of the %rst experiment, where 50% of all data is used
for training and 50% for testing, show that both RF and KNN
achieve a classi%cation accuracy above 98% (see Table 2). An ex-
planation for such good results can be derived from the two left-
most plots in Figure 1. Here, we can see that PacMAP %nds many
clusters in the data. However, the clusters are highly correlated to
the problems themselves. Thus, leaving some instances from the
target problem in the training set results in a high classi%cation
accuracy because the classi%cation task is now transformed into
identifying to which cluster the new sample belongs, which is a
much easier task to perform.

The more realistic scenario of having to predict the high-level
feature of a yet unseen problem is tested in the second experi-
ment. Here, the classi%cation accuracy drops to only 7–19% for

Table 2: Classi!cation accuracy when 50% of all data is used
for training and 50% for testing (!rst experiment).

Learning method Problem type Problem connectivity

RF 98% 99%
KNN 100% 100%

the problem type prediction, and to 41–57% for the problem con-
nectivity prediction (see the leftmost points corresponding to 0%
on the plots in Figure 2). This is comparable to the classi%cation
accuracy of the strati%ed classi%er, which achieves 19% for the
problem type prediction and 45% for the problem connectivity
prediction. We can look at the results of the third experiment to
help us understand this decline in classi%cation accuracy. As seen
from Figure 2, adding just a few instances of the target problem to
the training set drastically increases the classi%cation accuracy.

When the training data contains no instances from the target
problem, the classi%er is forced to %nd information about the
high-level feature from other problems. However, this is a much
harder task given that similar problems often have di&erent high-
level features (see the middle and right plots in Figure 1).

In the visualizations in Figure 1 the points indicating the cor-
rectly classi%ed instances have black edges. As we can see, for
many problems, RF has a 0% classi%cation accuracy (top middle
and top right plot). There are, however, some problems for which
RF %nds the correct class for a number of instances. Nonethe-
less, from these 2-D plots it is hard to understand why certain
instances are misclassi%ed by RF. This is because RF detects de-
tails in the data that the dimensionality reduction visualization
method is unable to capture.

Similar behavior can be observed for KNN. Given that KNN
classi%es an instance depending on the classes of its most similar
instances, the visualization from Figure 1 can help interpret its
poor results on the leave-one-problem-out methodology. We can
see that the clusters created by PacMAP are not well-aligned
with the high-level features of problem type and connectivity.
This makes predicting them a hard task for KNN. The cluster-
ing by PacMAP suggests that the applied ELA features are not
descriptive enough for predicting problem type and connectivity.

7 CONCLUSION AND FUTUREWORK
In this work, we tried to predict high-level features of CMOPs.
More speci%cally, using low-level ELA features, we constructed
the classi%ers to predict the problem type and connectivity. Two
ML classi%ers were utilized, RF and KNN.

We employed three evaluation methodologies. The %rst one
follows the related work and splits the data into two halves, one
serving as the training set and the other as the test set (instances
from the same problem are used in both sets). The second evalu-
ation methodology uses all instances from the target problem for
testing, and none for training. The third method gradually adds
the target problem data to the training set. We achieved excellent
classi%cation accuracy with the %rst evaluation methodology, but
very poor ones with the second one. The drop in classi%cation ac-
curacy was checked by the third methodology, which has shown
that already a small number of instances of the same problem
increases the classi%cation accuracy.

Visualizations of the data in the form of 2-D plots show that
CMOP instances form clusters that are highly correlated to the
problem instances, but not to the high-level problem features. For

9



Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia Andova et al.

Figure 1: Dimensionality reduction of the ELA feature space using the PacMAP method. Points are colored based on their
true values with correct classi!cations denoted by a black point edge. The top and bottom rows show the results for Random
Forest and KNN, respectively, while the di"erent classi!cation targets are arranged in columns: the left column displays
the results for the problem, the middle for problem type and the right for problem connectivity.

Figure 2: Classi!cation accuracy for di"erent proportions
of data from the target problem used for training.

this reason, by including some instances from the target problem
in the training set, the classi%cation task becomes an easier task of
recognizing to which cluster an instance belongs. Unfortunately,
this is not a realistic scenario, since in the real world we have
no information on the characteristics of the newly encountered
problem. We therefore recommend to use the second evaluation
methodology when addressing this task.

However, the initial results obtained using the second evalua-
tion methodology are not so promising. A possible improvement
could be consideringmore ELA features in the learning procedure,
either additional ones from [10] or newly created ones. Moreover,
using a more representative set of test problems from various
benchmark suites may also improve classi%er performance.
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