
Optimization and Visualization
in Many-Objective Space Trajectory
Design

Hernán Aguirre, Kiyoshi Tanaka, Tea Tušar and Bogdan Filipič

Abstract This work optimizes the thrusting profile of a low-thrust spacecraft pro-
pelled by an ion engine to raise from Earth’s low orbit to the vicinity of the Moon.
The orbital raising phase is divided uniformly into sixteen sections, of which the first
six are set to full propagation to escape early from the radiation belts, and the profiles
of the other ten sections are subject to optimization together with the propagation
start date and the spacecraft’s initial mass. Each section is defined by three variables.
Thus, the optimization problem consists of thirty-two variables. Four objective func-
tions are considered, namely the operation time of the ion engine system, time to
reach the Moon, maximum eclipse time, and the initial mass of the spacecraft, sub-
ject to various constraints. We use the many-objective optimizer named Adaptive
ε-Sampling and ε-Hood (AεSεH) to search for non-dominated solutions, analyze
the trade-offs between variables and objectives, and use a method called visualiza-
tion with prosections to gain insights into the problem and to analyze the dynamics
of the optimization algorithm.
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1 Introduction

The design of space exploration missions based on low-thrust spacecraft propelled
by ion engines is increasingly attracting attention. Ion propulsion systems efficiently
use fuel and electrical power to enable modern spacecraft to travel at higher velocity
and lower costs than other propulsion technologies currently available. There are
several in-space propulsion applications for ion engines. The best applications make
use of the long mission interval when significant thrust is not needed.

DESTINY (Demonstration and Experiment of Space Technology for INterplan-
etary voYage) is a candidate mission of the Japan Aerospace Exploration Agency
(JAXA) that aims to validate the advanced ion propulsion technology for future deep
space missions [9]. The DESTINY spacecraft is equipped with ultra-lightweight
solar panels and propelled by a low-thrust ion engine. The mission consists of sev-
eral phases. Firstly, DESTINY is launched by an Epsilon rocket [11] and positioned
into a low elliptical orbit around the Earth. Then, the spacecraft spirals up to the
vicinity of the Moon using the ion propulsion system. We call this the propagation
phase. DESTINY is subsequently injected into the L2 halo orbit [5] of the Sun-Earth
system by using the gravitational pull of theMoon. DESTINY conducts its engineer-
ing experiment and scientific observations at the L2 halo orbit for at least half a year,
after which it continues to its next destination if conditions permit. The mission is
schematically shown in Fig. 1.

We focus on the optimization of the thrusting profile of the ion engine to propagate
the DESTINY spacecraft from Earth’s low orbit to the vicinity of the Moon. The
formulation of the problem to optimize the thrusting profile of the ion engine has
evolved as the designers have gained knowledge about the problem, resulting in a
more detailed modeling of the orbital raising phase. Since the beginning, however,
the problem was considered a many-objective optimization problem with up to six
objective functions.

Initial formulations of the optimization problem considered a two-stage orbital
raising approach for the propagation phase to the Moon, where the spacecraft would
first raise only during the perigee and later switch to raise during the apogee. Thus,
the initial formulations considered up to five variables, including propagation start
date, switch date from the perigee raising to the apogee raising, range for apogee
raising, range for perigee raising, and the initial mass of the spacecraft [7, 12]. Six
objective functions were considered in [7], including the operation time of the ion
engine system, time to reach the Moon, maximum eclipse time (for the spacecraft
passing the shadow of the Earth), time to pass the inner radiation belt (at the altitude
of 5,000km), time to pass the outer radiation belt (at the altitute of 20,000km), and
the initial mass of the spacecraft. Similarly, four- and five-objective formulations
were considered in [12], fixing the initial mass of the spacecraft to 400kg, i.e., the
first four or five objectives used in [7].

Latest formulations divide the orbital raising phase into several sections, each
specified by three variables or parameters, seeking to optimize the engine thrusting
profile for each section. In [18], the formulation divides the time of the orbital raising
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Fig. 1 A schematic view of the DESTINY mission (reproduced after [8])

phase into eight sections, optimizing their parameters while minimizing the time
of flight, the operation time of the ion engine system, and the time to pass the
radiation belt. The initial mass was fixed to 400kg and maximum eclipse time was
not considered for minimization. In [17], the orbital raising phase is divided into ten
sections, setting the first three to full propagation to pass the radiation belts as soon
as possible and optimizing the profiles of the other eight sections with four objective
functions, minimizing the operation time of the ion engine system, time to reach the
Moon, maximum eclipse time, and maximizing the initial mass of the spacecraft.

In this work, we use a formulation that divides the orbital raising phase into 16
sections, setting the first six to full propagation and optimizing the profiles of the other
ten sections. Similarly to [17], we consider four objectives: the operation time of the
ion engine system, time to reach the Moon, maximum eclipse time, and the initial
mass of the spacecraft. We use AεSεH [1], a many-objective optimizer, to search
for Pareto optimal sets of solutions and analyze the trade-offs between variables and
objectives.

To gain insight into the workings of an algorithm as well as discover proper-
ties of the optimization problem at hand, visualization of algorithm results can be
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used. In many-objective optimization, visualization efforts are usually aimed at rep-
resenting solutions in the objective space. Because projections to lower-dimensional
spaces generally cause loss of information, this is a nontrivial task when optimiza-
tion problems have more than three objectives. In this work, we use a method called
visualization with prosections [15] to visualize the optimization results and analyze
the optimization algorithm performance.

This chapter is organized as follows. In Sect. 2 we present the formulation of the
optimization problem, in Sect. 3we describe the appliedmany-objective evolutionary
algorithm, and in Sect. 4, we introduce visualization in many-objective optimization
and, in particular, the method of visualization with prosections. In Sect. 5 we discuss
in detail some key optimization results and illustrate the use of visualization with
prosections in analyzing the outcome of the optimization and the dynamics of the
algorithm. We conclude with Sect. 6, summarizing the work done and the findings,
and presenting a plan for future work.

2 DESTINY Spacecraft Trajectory Design Problem

The DESTINY spacecraft will be launched in an Epsilon rocket, released into a low
elliptical orbit, and start a propagation stage to spiral away from the Earth towards
the Moon propelled by a low-thrust Ion Engine System (IES). The spacecraft must
reach the orbit of the Moon in at most 1.5years (approx. 550days or 13,000h), thus
one evaluation criterion is the time to reach the Moon. The IES is solar-powered
and requires the use of a battery when the spacecraft is under the shadow of the
Earth. Thus, it is important to minimize the eclipse time in order to reduce the size
and weight of the required battery. Based on previous knowledge, in this work we
constrain themaximum eclipse time to 2h. In addition, the IES operation time should
be minimized to reduce fuel consumption. Another evaluation criterion is the initial
mass of the spacecraft, which should be maximized to allow as much equipment
for experiments as possible. Further, the spacecraft must escape as soon as possible
from the inner (5,000km) and outer (20,000km) radiation belts surrounding the
Earth, since radiation can damage the solar panels and digital equipment.

The problem we are solving in this work is formulated as follows:

optimize f (v) = ( f1(v), f2(v), f3(v), f4(v)),

subject to
v = (d, p,m),

p = ((x1, y1, z1), . . . , (x16, y16, z16)),
d ∈ [0, 1],
xi , yi , zi ∈ [0, 1], 1 ≤ i ≤ 16,
400 kg ≤ m ≤ 450 kg,
f2 ≤ 1.5 years (approx. 550days or 13,000h),
f3 ≤ 2 h,
f4 = m,

(1)
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where three objective functions (IES operation time f1, time to reach the Moon
f2, and maximum eclipse time f3) are to be minimized, whereas the fourth one
(initial mass of the spacecraft f4) is to be maximized. The decision variables are
the propagation start date d, the IES operation profile during the raising phase to
the Moon p, and the initial mass of the spacecraft m. To compute the launch date,
d is linearly mapped from the range [0,1] to date in days and time in seconds. The
launch date is then given by 2019-07-01 00:00:00 + date + time in UTC. The
550days (1.5years) of orbital raising are uniformly divided into 16 sections. The
first six sections (x1, y1, z1), . . . , (x6, y6, z6) are set to full throttle to escape from
the radiation belts as quickly as possible.

In this work, we optimize the IES operation profile for the other ten sections
(x7, y7, z7), . . . , (x16, y16, z16), in addition to d and m. That is, the optimization
problem consists of 32 variables. In each section, the IES operation profile is given
by the apogee thrusting arc ΔLa, the perigee thrusting arc ΔLp, and the offset angle
η. These three parameters are expressed in degrees. The arcs given by 180 + η −
|ΔLa| ≤ θ ≤ 180 + η + |ΔLa| and η − |ΔLp| ≤ θ ≤ η + |ΔLp| are set to operate
the IES. Otherwise, the IES is coasting. When ΔLa > 0 and/or ΔLp > 0, the IES
is thrusting in the corresponding arc(s). Similarly, when ΔLa < 0 and/or ΔLp < 0,
the IES is thrusting in reverse in the corresponding arc(s). The parameters optimized
by the evolutionary algorithm are expressed in a (x, y, z) coordinate system. Given
a vector in (x, y, z), it is converted to the corresponding value (ΔLa, ΔLp, η) to
determine the IES profile. Further details about handling the coordinates can be
found in [17].

The initial mass of the spacecraft is multiplied by −1, so all functions are mini-
mized. To handle constraints and preferences, the fitness values of the solutions are
penalized as follows:

f ′
i (v) = fi (v) + αmax ( fi ), (2)

whereα = 1 if time to reach theMoon f2 is larger than 1500days,α = 2 ifmaximum
eclipse time f3 is larger than 2h, α = 3 if the spacecraft does not reach the vicinity
of the Moon, and max ( fi ) is the maximum observed value for fitness function fi .

3 The Adaptive ε-Sampling and ε-Hood Algorithm

Adaptive ε-Sampling and ε-Hood (AεSεH) [1] is an elitist evolutionary many-
objective algorithm that applies ε-dominance principles for parent selection and
survivor selection. In ε-dominance [10], the objective vector f (x) of a solution x is
firstmapped to another point f ′(x) in the objective space and dominance is calculated
using the mapped point. Let us consider, without loss of generality, a minimization
multi-objective problem with M objectives f (x) = ( f1(x), f2(x), . . . , fM(x)). A
solution x is said to ε-dominate another solution y, denoted by x ≺ε y, if the fol-
lowing conditions are satisfied:
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f (x) �→ε f ′(x)

∀i ∈ {1, . . . , M} f ′
i (x) ≤ fi ( y) ∧

∃i ∈ {1, . . . , M} f ′
i (x) < fi ( y),

(3)

where f (x) �→ε f ′(x) is a mapping function that depends on parameter ε.
The general flow of AεSεH is illustrated in Algorithm 3. The main steps and

characteristics of the algorithm are explained in further subsections.

Algorithm 3 AεSεH
Input: population size Psize, reference neighborhood size HRef

size , initial adaptation step Δ0
Output: F1, set of non-dominated solutions

1: NRef
h ← Psize/HRef

size // set reference number of neighborhoods
2: εs ← 0, Δs ← Δ0 // set εs-dominance factor and its adaptation step
3: εh ← 0, Δh ← Δ0 // set εh-dominance factor and its adaptation step
4: P ← random, Q ← ∅ // initial populations P and Q, |P| = Psize
5: evaluation(P)
6: non-dominated sorting(P)
7: repeat
8: // Parent selection
9: {H, Nh} ← ε-hood creation (P, εh) // H = {H j }, j = 1, 2, . . . , Nh
10: {εh,Δh} ← adapt (εh, Δh, NRef

h , Nh)
11: P′ ← ε-hood mating(H, Psize)
12: // Offspring creation
13: Q ← recombination and mutation(P′) // |Q| = |P| = Psize
14: // Evaluation and front sorting
15: evaluation(Q)
16: F ← non-dominated sorting(P ∪ Q) // F = {Fi }, i = 1, 2, . . . , NF
17: // Survivor selection
18: {P, Ns} ← ε-sampling truncation(F, εs, Psize) // Ns, number of samples
19: {εs,Δs} ← adapt (εs, Δs, Psize, Ns)
20: until termination criterion is met return F1

3.1 Parent Selection

For parent selection the algorithm first uses a procedure called ε-hood creation to
cluster solutions in the objective space. This procedure randomly selects an individual
from the population and applies ε-dominance with parameter εh. A neighborhood
is formed by the selected solution and its εh-dominated solutions. Neighborhood
creation is repeated until all solutions in the population have been assigned to a
neighborhood. Then, parents are selected by the ε-hoodmating procedure,which sees
neighborhoods as elements of a list that are visited one at the time in a round-robin
schedule. The first two parents are selected randomly from the first neighborhood in
the list. The next two parents are selected randomly from the second neighborhood in
the list, and so on.When the end of the list is reached, parent selection continues with
the first neighborhood in the list. Thus, all individuals have the same probability of
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being selected within a specified neighborhood, but due to the round-robin schedule
individuals belonging to neighborhoodswith fewermembers havemore reproduction
opportunities than those belonging to neighborhoods with more members.

The presented neighborhood creation and randomselectionwithin the sameneigh-
borhood works well when all solutions in the parent population are non-dominated,
which is the common situation in many-objective optimization during most genera-
tions of the evolutionary process. In the case that there are dominated solutions in the
population, ε-hood creation ensures that the solution sampled to create the neighbor-
hood is non-dominated and tournament selection is used to select parents within the
neighborhoods. This allows the algorithm to be used in multi- and many-objective
optimization [2]. It should be noted that due to the random schedule in which solu-
tions are selected to form the neighborhood, ε-hood creation would create different
neighborhoods in the next generation even if the population has not changed.

3.2 Offspring Creation, Evaluation and Front Sorting

Once the pool of mates has been formed, recombination and mutation are applied to
the selected parent individuals to create the offspring population Qt . The newly
created offspring population is evaluated. Then, the current population Pt and
its offspring Qt are joined and divided into non-dominated fronts F = {Fi }, i =
1, 2, . . . , NF using the non-dominated sorting procedure [4, 13].

3.3 Survivor Selection

Next, survivor selection is performed using ε-sampling truncation which applies
two different procedures according to the number of non-dominated solutions. If
the number of non-dominated solutions is smaller than the population size, |F1| <

Psize, the sets of solutions Fi are copied iteratively to Pt+1 until it is filled; if set
Fi , i > 1, overfills Pt+1, the required number of solutions are chosen randomly
from it. On the other hand, if |F1| > Psize, it calls ε-sampling with parameter εs.
This procedure samples solutions randomly from the set F1, inserting the sample
in Pt+1 and eliminating from F1 the sample itself and the solutions ε-dominated
by the sample. Sampling is repeated until there are no remaining solutions in F1.
After sampling, if Pt+1 is overfilled, the solutions are randomly eliminated from
it. Otherwise, if there is still room in Pt+1, the required number of solutions are
randomly chosen from the initially ε-dominated solutions and added to Pt+1. This
guarantees that the size of Pt+1 is exactly Psize. Note that due to the random schedule
in which solutions are sampled, ε-sampling will also choose a different subset of
solutions in the next generation even if the first front has not changed.
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3.4 Epsilon Mapping Function

The mapping functions f (x) �→ε f ′(x) used for ε-dominance in ε-sampling and
ε-hood creation determine the distribution of solutions the algorithm aims to find.
In this work, we use the following mapping function for both ε-hood creation and
ε-sampling:

f ′
i (x) = fi (x) − ε|min fi (x) − median fi (x)|, (4)

where εs ≥ 0 is used instead of ε in the case of ε-sampling and εh ≥ 0 in the case of
ε-hood creation. This kind of mapping function works well with functions of either
similar or different scales. Note that a minimization problem is considered in the
above mapping function.

3.5 Adaptation

Both epsilon parameters εs and εh used in survivor selection and neighborhood cre-
ation, respectively, are dynamically adapted during the run of the algorithm. The
adaptation rule, similar for both procedures, is as follows. If N > Ref, it increases
the adaptation step Δ ← min (Δ × 2,Δmax) and ε ← ε + Δ. Otherwise, if N <

Ref, it decreases Δ ← max (Δ × 0.5,Δmin) and ε ← max (ε − Δ, 0.0). In the case
of adapting the parameter εs used for truncation, the above rule is called with ε = εs,
Δ = Δs, N = Ns the number of ε sampled solutions, and Ref= Psize the population
size. On the other hand, in the case of the parameter εh used for neighborhood cre-
ation, the above rule is called with ε = εh, Δ = Δh, N = Nh the number of created
neighborhoods, and Ref= NRef

h the reference number of neighborhoods.

4 Visualization

In this section, we briefly discuss the state of visualization in many-objective opti-
mization and present visualization with prosections.

4.1 Visualization in Many-Objective Optimization

While many methods specifically designed for visualization in many-objective opti-
mization are continuously beingproposed [3, 15],parallel coordinates [6] and scatter
plots (or the scatter plot matrix) remain the most often used visualization methods
in this field. They are both easy to understand and can visualize the decision space
in addition to the objective space, but have some limitations. For example, although
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parallel coordinates are scalable to any number of objectives, they become increas-
ingly difficult to interpret when visualizing a large number of solutions. Conversely,
a scatter plot matrix can be used to visualize (moderately) large sets, but its scal-
ability in the number of objectives is hindered by the large amount of resulting
plots (the scatter plot matrix for M objectives contains M(M − 1)/2 different plots).
Moreover, bothmethods conceal some properties of solution sets that are important in
multi-objective optimization, such as the shape of the front (indispensable for finding
knees, i.e., regions with good trade-offs between objectives) and Pareto-dominance
relations between solutions (needed when comparing multiple sets).

Contrary to these two methods, visualization with prosections, a visualization
method introduced in [14] and detailed in [15], is able to partially preserve the front
shape, distribution of solutions, and Pareto-dominance relations between solutions,
but does so to the expense of visualizing the entire set. It is therefore complimentary
to parallel coordinates and scatter plots and can be used in combination with scatter
plots to provide additional information on algorithm performance.

In this work, we employ scatter plots and prosections to visualize results by
AεSεH, while parallel coordinates are not used due to their disadvantages when
visualizing large sets.

4.2 Visualization with Prosections

Prosection, a term describing the projection of a section [16], is a reduction in
dimension that visualizes only one portion of solutions, i.e., those that lie in the
chosen section. Assume that the objectives f1 and f2 have been normalized to [0, 1].
In visualization with prosections [15], the section on the plane f1, f2 is defined by
the angle ϕ and width d with:

| f1(x) sin ϕ − f2(x) cosϕ| ≤ d. (5)

That is, solutions x for which this inequality holds, have at most distance d in the
objective space to the line originating in (0, 0) and intersecting the plane f1, f2 under
the angle ϕ. All solutions within this section are subject to the following reduction
in dimension:

s f1, f2,ϕ,d(x) = f1(x) cosϕ + f2(x) sin ϕ. (6)

This is a composition of two functions, an orthogonal projection to the line starting
in the origin and intersecting the plane f1, f2 under angle ϕ, and a rotation by −ϕ

around the origin as shown in Fig. 2. We will use the short notation s f1, f2 instead of
s f1, f2,ϕ,d for readability reasons.

Prosections can be used to visualize solutions from a 4-D objective space in 3-D
by applying the transformation from Eq. (6) to two of the objectives, for example f1
and f2, while leaving the other two objectives intact:
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f1

f2

ϕ

d
d

0
0

sf1,f2

f1

f2

ϕ

0
0

(a) Orthogonal projection (b) Rotation by −

Fig. 2 The two functions composing the transformation s f1, f2,ϕ,d : the orthogonal projection of all
solutions within the section to the line starting at the origin and intersecting the plane f1, f2 under
angle ϕ (a), and the rotation by −ϕ around the origin (b)

( f1(x), f2(x), f3(x), f4(x)) �→ (s f1, f2(x), f3(x), f4(x)). (7)

In contrast to other visualization methods, in visualization with prosections we are
able to assess the distortions brought by the dimension reduction, which amount to
at most 2d max{tan ϕ, tan−1 ϕ} [15]. Therefore, if the prosection of the solution x
dominates the prosection of the solution y, i.e., if

(s f1, f2(x), f3(x), f4(x)) ≺ (s f1, f2( y), f3( y), f4( y)), (8)

and the two solutions are apart enough, i.e.,

s f1, f2( y) − s f1, f2(x) ≥ 2d max{tan ϕ, tan−1 ϕ}, (9)

then the original solution x actually dominates the original solution y. This is impor-
tant as it enables us to ‘trust’ the visualization to a certain (measurable) degree.

Furthermore, we can compute the original values of f1 and f2 from the value of
s f1, f2 up to a precision dependent on d and ϕ:

f1(x) = s f1, f2(x) cosϕ ± d sin ϕ, (10)

f2(x) = s f1, f2(x) sin ϕ ± d cosϕ. (11)

We illustrate visualization with prosections using two sets of solutions from the
4-D objective space (each containing 3,000 solutions). The first is linear, with val-
ues ranging in [0, 1]4 and a uniform random distribution of solutions. The second is
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(a) Scatter plot (solutions in the (b) Prosection plot (only solutions
section are emphasized) in the section are shown)

Fig. 3 The scatter (a) and prosection (b) plots of the 4-D linear and spherical sets for the section
on the plane f1, f2 with ϕ = 45◦ and d = 0.02

spherical, with values in [0, 0.75]4 and a non-uniform random distribution of solu-
tions (only few solutions are located in the middle of the objective space, while most
of them are near its four corners). The sets are intertwined, meaning that in one
region, the linear dominates the spherical one, while in others, the spherical domi-
nates the linear one. The two sets have very different characteristics and are therefore
appropriate for analyzing the properties of visualization methods.

Figure3 shows the scatter and projection plots of the linear and spherical sets for
the section on the plane f1, f2 with ϕ = 45◦ and d = 0.02. The two plots are supple-
mentary in that the scatter plot depicts the two sets in their entirety, while the prosec-
tion plot presents a more detailed 3-D view of the solutions contained in the section.
The chosen section cuts through two out of the four clusters of solutions from the
spherical set. This cannot be seen from the scatter plot because the two clusters over-
lap when viewed in a projection on the plane f1, f2, but is immediately visible in the
prosection plot. Moreover, it is clear that the shape and distribution of solutions from
the sets are well-retained in the prosection plot. In addition, 2d max{tan ϕ, tan−1 ϕ}
from Eq. (9) equals 0.04 for the chosen section (depicted with the black line next
to the origin (0, 0, 0) in Fig. 3b), which means that almost all of the solutions that
look like they dominate the solutions from the other set actually dominate them in
the original 4-D sets. In other words, almost all Pareto dominance relations between
the two sets are maintained after prosection in this case.

Since one prosection plot shows only a small part of the sets, different angles ϕ

should be used to view the entire sets. Additionally, multiple planes could be chosen
for dimension reduction, which is analogous to the choice of planes for a scatter plot.
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5 Optimization Results and Their Analysis

In this work, AεSεH uses SBX crossover and polynomial mutation. The population
size is Psize = 680, and the number of generations 100. The reference neighborhood
size for AεSεH is HRef

size = 20. The algorithm archives the population at each gener-
ation. The fitness functions are computed using FABLE, a computer program that
simulates the propagation phase based on an analytic averaging technique [18] that
reduces computational time. It takes between one and twominutes to evaluate a solu-
tion with FABLE. Ten runs with different random seeds were performed. A large
number of non-dominated solutions were obtained in each run, with small variance
among runs. Here we report the results for a typical run of the algorithm.

In the following, we first examine the non-dominated solutions computed after
joining all archived populations, which amounts to 3,496 solutions. Then, we analyze
the convergence of the AεSεH algorithm by visualizing non-dominated solutions
from population archives at 20, 40, 60, 80 and 100 generations.

5.1 Analyzing Non-dominated Solutions

Figure4 shows the approximation for the Pareto optimal set found by the algorithm
on the plane f1, f2, the IES operation time and time to reach the Moon, coloring
solutions according to their value in function f4, the initial mass of the spacecraft.
Recall that the initial mass is to be maximized, while the remaining objectives are

Fig. 4 f1: Ion Engine
System operation time and
f2: Time to reach the Moon,
colored by f4: Initial mass of
the spacecraft
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Fig. 5 f1: Ion Engine
System operation time and
f3: Maximum eclipse time,
colored by f4: Initial mass of
the spacecraft

to be minimized. The figure clearly shows the trade-off between objectives f1 and
f2 and illustrates the impact of increasing the initial mass. Note that for a given
value of initial mass ( f4), the IES operation time ( f1) must be increased in order to
reduce the time to reach the Moon ( f2). Increasing the initial mass implies a longer
time to reach the Moon and also a longer IES operation time. The IES operation
time is correlated to the amount of fuel required for the engine. This figure allows
to estimate appropriate bounds for the required fuel according to the initial mass.
As already mentioned, in the DESTINY mission, 1.5years (around 13,000h) is the
maximum desired time to reach the Moon. Note that the algorithm finds a large
number of solutions with the time to reach the Moon similar to or smaller than the
maximum desired time.

Figure5 shows the obtained approximation for the Pareto optimal set on the plane
f1, f3, the IES operation time and the maximum eclipse time, also coloring solutions
according to their value in function f4, the initial mass of the spacecraft. In this prob-
lem, solutions with a maximum eclipse time of 2h or less are desired to avoid larger
batteries. Note that a large number of solutions within the desired range of maximum
eclipse time can be found, irrespectively of the initial mass of the spacecraft.

Figures6 and 7 show the propagation start date and hour (variable d) colored
by f2, time to reach the Moon, and by f3, maximum eclipse time, respectively.
Note that some of the solutions with time to reach the Moon ≤ 12,400h have also a
maximumeclipse time≤ 1.4h, satisfying the twomain requirements for this problem
formulation.

Next, we use prosections to visualize in more detail a section containing many
solutions of interest, i.e., those with time to reach the Moon ( f2) lower than or equal
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Fig. 6 Propagation starting
date and hour, colored by f2:
Time to reach the Moon

Fig. 7 Propagation starting
date and hour, colored by f3:
Maximum eclipse time

to 13,000h and maximum eclipse time ( f3) lower than or equal to 1.5h. Figure8
shows the scatter and prosection plots for the solutions within the section on the
plane f2, f3 with ϕ = 35◦ and d = 0.02. All solutions in the section are colored by
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Fig. 8 The scatter (a) and
prosection (b) plots for the
section on the plane f2, f3
with ϕ = 35◦ and d = 0.02,
solutions are colored by f1
(see text for more
information)

(a) Scatter plot

(b) Prosection plot

the IES operation time ( f1). In addition, solutions outside of the ‘region of interest’
are depicted with smaller points.

The prosection plot in Fig. 8b is a 3-D scatter plot that shows the transformation
s f2, f3 on the x axis, the objective f1 on the y axis and the inverted objective − f4
on the z axis (the inversion is done because prosection assumes minimization in
all objectives). The original values of f2 and f3 are shown on the two additional x
axes with dark and light dashed lines, together with their respective precisions as
follows from Eqs. (10) and (11). We can see that due to the small section width,
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the values of f2 and f3 can be restored with a high precision. The prosection plot
shows well the seemingly linear trade-offs between objectives s f2, f3 , f1 and f4. A
short IES operation time ( f1 < 8,000h) is possible only for high initial mass ( f4)
and (relatively) high, but still feasible, time to reach the Moon ( f2) and maximum
eclipse time ( f3). On the other hand, if the IES operation time ( f1) is between 8,500
and 9,000h, several trade-offs between the initial mass of the spacecraft ( f4) and
time to reach the Moon ( f2) and maximum eclipse time ( f3) are possible.

5.2 Analyzing the Algorithm Dynamics

So far, we have only shown the best solutions found by the AεSεH algorithm. Now
we analyze the convergence of the algorithm with the help of visualization with
prosections. To this end, we collect and visualize the non-dominated solutions of the
current population of the AεSεH algorithm at 20, 40, 60, 80 and 100 generations.

We show the results of the prosection on the plane f1, f2 under two different
angles and section width d = 0.02 in Figs. 9 and 10. Solutions are colored according
to the generation number. Furthermore, those for which maximum eclipse time ( f3)
exceeds 2h are denoted with different markers (triangles instead of circles) to ease
the interpretation.

Plots in Fig. 9 of the section under the angle ϕ = 20◦ show that no solutions were
found by AεSεH in this part of the objective space in the first 40 generations. At 60
generations, some solutions are present, but only with low initial mass ( f4). Addi-
tional generations are needed to further widen the front in this part of the objective
space.

Similar observations can be made by visualizing the solutions in the section under
the angle ϕ = 45◦ (see plots in Fig. 10). At generation 20, the solutions cover only a
small part of the front and are far away from the best solutions. A lot of improvement
can be observed at generations 40 and 60 in terms of convergence as well as the
range of solutions. Contrary to this, the improvement between generations 80 and
100 is only minor, suggesting the search has converged to a (local) optimum. Note,
however, that because of the loss of information due to projecting solutions to a low-
dimensional space, not all solutions that appear to dominate other solutions in fact do
so. This can be asserted by comparing the distances between solutions from different
generations to the distance from Eq. (9) (shown in Figs. 9b and 10b with the black
line starting at the plot origin (0, 1,−450)). We cannot be sure of the dominance
relation between any two solutions that are closer in s f1, f2 than this distance (the other
two coordinates are not affected by the projection). Note that the relations between
solutions in a prosection plot can be explored muchmore easily on a computer where
the 3-D plots can be rotated interactively, than by looking at the same plots on paper.
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Fig. 9 The scatter (a) and
prosection (b) plots for the
section on the plane f1, f2
with ϕ = 20◦ and d = 0.02,
solutions are colored by
generation number (see text
for more information)

(a) Scatter plot

(b) Prosection plot

Finally, these plots also suggest that while early generations still contain some
solutions with maximum eclipse time ( f3) of over 2h, the penalization mechanism
in AεSεH, as explained in Sect. 2, sucessfully navigates the search towards a smaller
maximum eclipse time.
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Fig. 10 The scatter (a) and
prosection (b) plots for the
section on the plane f1, f2
with ϕ = 45◦ and d = 0.02,
solutions are colored by
generation number (see text
for more information)

(a) Scatter plot

(b) Prosection plot

6 Conclusions

This work used the many-objective AεSεH evolutionary algorithm to find solutions
for a four-objective formulation of the trajectory design problem of the JAXA’s DES-
TINY mission. We analyzed the approximations of Pareto optimal sets of solutions
found by the algorithm, focusing particularly on the trade-offs between the IES oper-
ation time, time to reach theMoon, maximum eclipse time, and the initial mass of the
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spacecraft. We also analyzed the propagation starting date and the maximum eclipse
time.

Visualization with prosections are helpful for analyzing in detail the outcome of
the optimization and gaining insights into the problem. In addition, prosections allow
to perform a fine-grained analysis of the algorithm dynamics and to verify whether
the mechanisms it incorporates work as expected, as shown for the penalization of
solutions when the eclipse time exceeds a maximum allowed value. Although in this
work the analysis is a posteriori, prosections can provide on-line information from
different sections in the objective space that could be fed back to a decision maker to
guide the algorithm in an interactive way or to the algorithm itself to adapt its search.

In the near future we would like to study these applications of prosections. We
would also like to analyze other many-objective formulations of the problem with
five and six objectives. An important challenge here is how to use prosections for
dimensions larger than four. Finally, the methodology used in this work for opti-
mization, analysis and visualization is general and we would like to apply it to other
real-world application domains.
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