DEMO Documentation
version 1.3

Tea Tusar
Department of Intelligent Systems
Jozef Stefan Institute
Ljubljana, Slovenia

tea.tusar@ijs.si

November 3, 2009

Table of Contents

1 Introduction

2 Running DEMO

3 Use of an extern evaluator

4 Explanation of parameters
4.1 Parameters of the algorithm DEMO
4.2 Parameters of the problem
4.3 Parameters of theoutputo

5 Changes from previous versions

1 Introduction

This is the documentation of the program DEMO, which implements the algorithm
DEMO (Differential Evolution for Multiobjective Optlmlzatlon) described in detail in
(Tusa, Izoﬂj (Tusar and Filipid, 2007) and (Robi¢ and Filipid, 2005). DEMO was de-
veloped for minimizing multiple objectives of numerical functions and extern simulators
(see Section [)) and can also handle constraints (although the mentioned documents do
not explain this).

This document will not go into the details of the algorithm DEMO-—it rather fo-
cuses on the usage of the program DEMO and requires some background knowledge of
multiobjective optimization and evolutionary algorithms for multiobjective optimization.

2 Running DEMO

The program demo.exe must be run using the following syntax:
demo.exe <ini file> [<parameter name> <parameter value>]

The file ini file should contain all the necessary parameters and their values (see
Section M for details). After ini_file, arbitrary parameters (and their values) can be
listed—each such entry overwrites the corresponding parameter value read previously
from the file ini file. For example, if the file ini file.txt contains the following
lines:

pop-size
20

and DEMO is called with:
demo.exe ini file.txt pop_size 50,

then the optimization algorithm DEMO will use a population of size 50.

The program DEMO was written in C++Hland compiled on Windows XP. Since
DEMO is a simple console application (no fancy VCL classes have been used), it should
not be too difficult to compile on other operating systems. However, be careful with the
usage of extern simulators, since the functions used there are specific for Windows™.

T Actually, we used C++ from Borland® Developer Studio for Windows™ Version 10.0.2288.42451
Update 2.

3 Use of an extern evaluator

DEMO can be used for optimization of an extern evaluator/simulator. In that case,
the following parameters need to be specified (see Subsection for details on these
parameters):

num_var
num_func
num_feat
command
archive
archive_read
archive write
sim_in
sim_out

The communication between DEMO and the simulator is done through files. When
evaluating an individual, DEMO first writes the individual’s variables into the file sim_in
(one variable per line). After that, DEMO calls the process defined in command, which
must take care of running the simulator using the parameters from the sim_in file and
(after evaluation) writing the output to the sim_out file. The sim_out file must contain
information in the following format:

— 0/1 (whether the evaluation was successful),

— violation (a value representing the violation of constraints of the individual—the
higher the value the worse the individual),

— list of criteria (one per line),

— list of features (one per line).

If the evaluation was not successful, the violation and criteria must nevertheless be
written in the sim out file. Usually, a very high value for the violation and criteria
is chosen in such cases. Please note also that the flag for successful evaluation should
be written as plain 0/1 and not 0.00/1.00 or similar since the program reads this as a
boolean value.

If the archive read parameter is set to 1 (true), DEMO checks the archive for the
evaluation of the current individual before calling the extern evaluator (see Figure [I).
This might speed up the whole optimization when the evaluations are time-consuming.
However, beware of huge archive files since they eventually slow down the whole process!

1
1
DEMO S write solution |
S to sim_in !
’ 1 K
’ \
’ \ 1
4 1
VA ' N
[Y - read from '
’ run simulator R ’
’ N archive ’
/,/, - -~ . E
' N l ,
AY
II \\ N , ’
N .
1 evaluate ' S read objectives e
. : .
! solution ! S from sim out -
\ 1 < . .

Figure 1: Extern evaluation of solutions.

4 Explanation of parameters

The program DEMO uses several parameters, which can be classified into three groups:
— parameters of the algorithm DEMO,
— parameters of the problem,
— parameters of the output.

All parameters (including the ones that do not apply for a specific problem) should be
defined in the ini file.

4.1 Parameters of the algorithm DEMO

The algorithm DEMO uses the following parameters:

seed Random generator seed. If equal to 0, the seed is chosen randomly.
pop_size Number of individuals in the population (at least 4).

max_eval Maximum number of evaluations, which serves as the stopping criterion (at
least 4).

weight Weight F' used in the creation of new individuals using the DE/rand/1/bin
scheme. Usually it is set to values around 0.5, although any value in the inter-
val [0,2] can be used. Sece (Price et all, 2005) for more details on the basic DE
algorithm.

cross_prob Crossover probability C'R. The efficiency of DE (and consecutively DEMO)
depends upon this parameter. Although it has not been throughly studied so far,
we suggest the following guidelines: if the decision space has only a few dimensions
(for example, 2 or 3), the crossover probability should be high (around 0.8). If the
decision space has many dimensions, the crossover probability should be low (0.3
or even lower). The values of this parameter must always lie in the interval [0, 1].
See dpﬂiﬁjjﬁﬂ, M) for more details on guidelines for setting this parameter for
DE.

always_add (flag) Whether to always add the candidate in the population.
0 = If the candidate dominates the parent, the candidate replaces the parent. If the
parent dominates the candidate, the candidate is discarded. Otherwise, the candi-

date is added in the populatlon (The DEMO algorithm from (IBQbE_and_Elh.piﬂ,

) and (Tugar and Filipid, 2007) uses this setting.)

1= The candidate is always added to the population (disregarding its relation to
the parent).

sel type (flag) Type of environmental selection.
0 = DEMOM!! uses environmental selection as NSGA-II (nondominated sorting
and the crowding distance metric).
1 = DEMO'™ uses environmental selection as IBEA (with indicators—see the pa-
rameter indicator for possible indicators).
2 = DEMO®? uses environmental selection as SPEA2 (strength of the individu-
als and their mutual distances—see @MJ 2001)) for more information on
SPEA2).

While (IBQbmmi_Elthd 2005) used only DEMONS in (Tugar and Filipid, [2007)

all three variants are presented.

elitism (flag) This parameter applies only if the NSGA-II selection is used. It deter-
mines whether to use constrained elitism in NSGA-II's selection. See (M,
M) for more information on NSGA-II.
0 =no
1 = yes

elitism r This parameter applies only if the NSGA-II selection and the constrained

clitism are used. It should lie in the interval (0,1]. See (Deb and Goyal, 2000) for

more information on NSGA-II's controlled elitism.

indicator (flag) This parameter applies only if the IBEA selection is used. It deter-
mines the indicator type used for fitness calculation. See (Zitzler and Kiinzli, M)

for more information on IBEA.
0 = additive epsilon indicator
1 = hypervolume indicator

rho This parameter applies only if the IBEA selection with the hypervolume indicator
is used. It determines the nadir point. For hypervolume evaluation, the criteria of
all individuals in the current population are scaled to the interval [0, 1]. The nadir
point is the reference point for the calculation of the hypervolume indicator and is

usually set to 2. See (Zitzler et all, M) for more information on IBEA.

kappa This parameter applies only if the IBEA selection is used. It determines the
scaling factor used in the calculation of the indicator and must lie in the interval

(0,1]. See (Zitzler et all, 2001) for more information on IBEA.

4.2 Parameters of the problem

Here we describe the parameters that determine the multiobjective optimization problem
in question.

func_type (flag) Type of the problem function. Can have one of the following values:
0 = extern evaluation

1=72DT1
2 =172DT2
3 =72DT3
4 =7DT4
5 = 72ZDT6
6 = WFG1
7= WFG2
8 = WFG3
9 = WFG4
10 = WFGH
11 = WFG6
12 = WFGT7
13 = WFGS
14 = WFGY
15 = DTLZ1
16 = DTLZ2
17 = DTLZ3
18 = DTLZ4
19 = DTLZ5

20 = DTLZ6

21 = DTLZ7

22 = DTLZ6s (shifted DTLZ6)

23 = DTLZTs (shifted DTLZT)

See (Zi |20£)ﬂ) for more information on the ZDT problems, (m,

) for WFG problems, (Deb et all,12005) for DTLZ problems and m

) for the shifted DTLZ6 and DTLZ7 variants. The parameters used for shifting
the problems DTLZ6 and DTLZT are equal to that of the shifted DTLZ2 explained

n (IHlmg_eL@LJ, [ZDD_ﬂ)

num var This parameter applies only if the extern evaluation is used. It determines the
number of variables of the problem. Immediately after the number of variables,
the variables’ bounds and discretization must be written in the following format:

variable min variable max variable_discretization

If the variable can take continuous values, 0 is used as the discretization parameter.

num_func This parameter applies only if the extern evaluation is used. It determines
the number of functions/criteria of the problem (at least 2). After the number of
functions, the functions’ lower and upper bounds must be written in the following
format:

func_lower func_upper

These bounds are used only for calculating or estimating the hypervolume of the
nondominated individuals at each generation, which is output in the generation
statistics. The bounds must be set in such a way, that an evaluated individual can
never have the criteria outside them. Using this bounds, the criteria of all individ-
uals are scaled to the interval [0, 1] and the reference point 2 is used for calculating
or estimating the hypervolume. See (While et all, |2£)Dﬂ) for more information on
the calculation of the hypervolume measure. The bounds affect only the hyper-
volume calculation and estimation which are part of the output information—this
setting does not influence the optimization process!

num feat This parameter applies only if the extern evaluation is used. It determines
the number of features to be output for each individual. If 0, no features are used.
Think of features as an additional information of the simulator that is useful for
understanding the current solution.

command This parameter applies only if the extern evaluation is used. It determines the
name of the executable file of the simulator.

archive This parameter applies only if the extern evaluation is used. It determines the
name of the archive file used with extern evaluation.

archive read (flag) This parameter applies only if the extern evaluation is used. It
determines whether the archive should be checked for existence of previous evalu-
ations of the current individual before calling the extern evaluator.
0 =no
1 = yes

archive write (flag) This parameter applies only if the extern evaluation is used. It
determines whether the individual should be written into the archive after evalua-
tion with the extern evaluator.
0 = no
1 = yes

sim_in This parameter applies only if the extern evaluation is used. It determines the
name of the simulator input file. See Section [for more information on the formats

of this file.

sim out This parameter applies only if the extern evaluation is used. It determines
the name of the simulator output file. See Section [3 for more information on the
formats of this file.

wfg M This parameter applies only if the WFG or DTLZ test problems are used. It deter-
mines the number of function/criteria of the problem (at least 2). See ,
) for more information on the WFG test problems and (Deb et all, Q@ﬂ) for
DTLZ problems.

wig k This parameter applies only if the WFG test problems are used. Together with
wfg 1 it determines the number of variables of the problem (= wfgk + wfg1).
The following must hold for this parameter:

wig k mod (wfgM-1) ==0

See (Huband et all, 2006) for more information on the WFG test problems.

wig 1 This parameter applies only if the WFG test problems are used. Together with
wfg k it determines the number of variables of the problem (= wfgk + wfg.1).
See (Huband et all, 2006) for more information on the WFG test problems.

4.3 Parameters of the output
The parameters described here handle the output of DEMO.

log file name Name of the file with information on the progress of the optimization.
The log file contains the following information:

— values of all relevant input parameters,
— information on all evaluated individuals in the order of evaluation:

— consecutive number of the individual,

— individual’s variables,

— whether the individual was successfully evaluated,
— violation,

— individual’s criteria,

— individual’s features.

log mode (flag) Type of output for the log file:
0 = do not create the log file
1 = overwrite the existing file
2 = append to the existing file

front_file name Name of the file with information on the best individuals.

front mode (flag) Type of output for the file with the best individuals:
0 = do not create the file with the best individuals
1 = overwrite the existing file
2 = append to the existing file

front_gen Number determining the generations, at which the best individuals are out-
put:
1 = output the best individuals of all generations
k = output the best individuals of every k-th generation
Note that if k is greater than the number of all generations, there will be no output
of the best individuals!

front_long (flag) This parameter determines the type of output of the best individuals:
0 = short front output (outputs only the criteria of the best individuals)
1 = long front output (outputs the variables, violations, criteria and features of
the best individuals)

gen file name Name of the file with statistics of every generation. This file contains
the following information:

— generation number,

number of feasible individuals in the generation,
— number of unfeasible individuals in the generation,

— number of individuals that were not evaluated,

average violation of the unfeasible individuals,
— number of nondominated individuals,

— exact hypervolume of the nondominated individuals (see also num func and
gen_hyp method),

— hypervolume estimation of the nondominated individuals using the Monte
Carlo method (see also num_func, gen hyp method and gen num MC_points),

number of candidates that dominated the parents,
— number of parents that dominated the candidates,

— number of candidates that are incomparable to their parents.

gen mode (flag) Type of output for the file with generational statistics:
0 = do not create the file with generational statistics
1 = overwrite the existing file
2 = append to the existing file

gen hyp method (flag) What method to use when calculating the hypervolume of every
generation (this is given as an option, because the exact calculation of the hyper-
volume is computationally very expensive if the number of objectives is high (5 or
more)):
0 = do not calculate the hypervolume and do not estimate it
1 = calculate the hypervolume exactly
2 = estimate the hypervolume using the Monte Carlo method and the number of
points specified in gen num MC_points
3 = both calculate the hypervolume exactly and use the Monte Carlo method to
estimate 1t
Note that the Monte Carlo estimation assumes that the entire objective space is
feasible (if it is not, the estimation will be wrong)!

gen num MC points The number of points used in the Monte Carlo estimation of the
hypervolume (at least 100). Note that with a lot of points, the estimation is not
only more accurate but also more computationally demanding.

lines_file name Name of the file with information on dominating candidates. For
each pair parent-candidate, where the candidate dominates the parent, an entry
consisting of the objectives of both individuals is output to this file. This can be

10

used to draw the lines that connect the parent to the better candidate. These lines
show the progress of the optimization in the objective space.

lines mode (flag) Type of output for the file with lines:
0 = do not create the file with lines
1 = overwrite the existing file
2 = append to the existing file

5 Changes from previous versions

New in DEMO v1.3:
e The DTLZ6s and DTLZT7s benchmark problems are corrected.
New in DEMO v1.2:

e Two new problem functions are implemented: DTLZ6s and DTLZT7s (the shifted
DTLZ6 and DTLZT7 functions, respectively).

e The hypervolume of feasible individuals in each generation can be calculated ac-
curately or estimated using the Monte Carlo approach. The desired method is set
using the new parameter gen hyp_method, while the number of points used in the
Monte Carlo estimation is set with gen_num MC_points.

e A bug in the IsEqual function is corrected—a new function IsEqualCrit is added
that compares two vectors from the objective space, while IsEqual is now used
only to compare vectors from the decision space.

Acknowledgment

Thanks to the creators of the PISA environment (http://www.tik.ee.ethz.ch/pisal)
and to the Walking Fish Group (http://www.wfg.csse.uwa.edu.au/)) for making their
code publicly available.

References

K. Deb and T. Goyal. Controlled elitist non-dominated sorting genetic algorithms for
better convergence. KanGAL report 200004, Indian Institute of Technology, Kanpur,
India, 2000.

11

http://www.tik.ee.ethz.ch/pisa
http://www.wfg.csse.uwa.edu.au/

K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):
182-197, 2002.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolutionary
multi-objective optimization. In A. Abraham, R. Jain, and R. Goldberg, editors, Fvo-
lutionary Multiobjective Optimization: Theoretical Advances and Applications, chap-
ter 6, pages 105-145. Springer, 2005.

V. L. Huang, A. K. Qin, K. Deb, E. Zitzler, P. N. Suganthan, J. J. Liang, M. Preuss, and
S. Huband. Problem definitions for performance assessment of multi-objective opti-

mization algorithms. Technical report, Nanyang Technological University, Singapore,
January 2007.

S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test
problems and a scalable test problem toolkit. [EFEE Transactions on FEvolutionary
Computation, 10(5):477-506, 2006.

K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical Approach
to Global Optimization (Natural Computing Series). Springer-Verlag New York, Inc.,
2005.

T. Robi¢ and B. Filipic. DEMO: Differential evolution for multiobjective optimization.
In Proceedings of the Third International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005), pages 520-533, March 2005.

T. Tusar. Design of an algorithm for multiobjective optimization with differential evo-
lution, 2007.

T. Tusar and B. Filipi¢. Differential evolution versus genetic algorithms in multiobjective
optimization. In Proceedings of the Fourth International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2007), pages 257-271, March 2007. To appear.

L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for calculating
hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29-38, 2006.

E. Zitzler and S. Kiinzli. Indicator-based selection in multiobjective search. In Proceed-
ings of the Eighth International Conference on Parallel Problem Solving from Nature
(PPSN VIII), pages 832-842, September 2004.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173-195, 2000.

12

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolu-
tionary algorithm. In Proceedings of Evolutionary Methods for Design, Optimization
and Control with Applications to Industrial Problems (EUROGEN 2001), pages 95—
100, September 2001.

13

	Introduction
	Running DEMO
	Use of an extern evaluator
	Explanation of parameters
	Parameters of the algorithm DEMO
	Parameters of the problem
	Parameters of the output

	Changes from previous versions

